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ABSTRACT

Audio-based multimedia retrieval tasks may identify semantic infor-
mation in audio streams, i.e., audio concepts (such as music, laugh-
ter, or a revving engine). Conventional Gaussian-Mixture-Models
have had some success in classifying a reduced set of audio con-
cepts. However, multi-class classification can benefit from context
window analysis and the discriminating power of deeper architec-
tures. Although deep learning has shown promise in various appli-
cations such as speech and object recognition, it has not yet met
the expectations for other fields such as audio concept classification.
This paper explores, for the first time, the potential of deep learn-
ing in classifying audio concepts on User-Generated Content videos.
The proposed system is comprised of two cascaded neural networks
in a hierarchical configuration to analyze the short- and long-term
context information. Our system outperforms a GMM approach by
a relative 54%, a Neural Network by 33%, and a Deep Neural Net-
work by 12% on the TRECVID-MED database.

Index Terms— deep neural networks, audio concepts classifi-
cation, TRECVID

1. INTRODUCTION

With the ubiquity of recording devices and online sharing websites,
access to and the quantity of user-produced multimedia has grown
exponentially. For this reason, recent competitive evaluations from
NIST, i.e. the TRECVID Multimedia Event Detection (MED) [1],
and others like MediaEval and Pascal VOC, have focused on inves-
tigating core detection technologies to analyze, retrieve and label
multimedia recordings based on their content.

The literature on audio concepts has been previously visited for
various purposes including: laughter detection [2] and speech-music
detection [3] just to mention a few. Nevertheless, most prior work
has been based on test and training corpora recorded in laboratory,
under rather controlled environment conditions, while the field of
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audio concept classification on User-Generated Videos (UGV) is rel-
atively new. Identifying semantic information such as audio con-
cepts (laughter, clapping, singing) is a significantly more complex
problem on UGC datasets, due to multiple and sometimes overlap
acoustic sources, variate durations and different level of prominence
as well as different recording devices for each video. The authors
in [4] train Gaussian Mixture Models (GMMs) for 20 acoustic con-
cepts on User Generated Content (UGC) videos, but like [5] evaluate
their performance based on a higher level task, namely audio-based
video event detection. In [6], atomic units of sounds are employed
to independently detect 10 concepts with over 50% recall for all of
them. Another example is [7], where GMMs were trained on the
audio concepts segments. Then, the concepts were ordered in eight
groups based on their average lengths. Results show an overall av-
erage segment classification accuracy of about 70%. While GMMs
techniques remain dominant, Neural Networks (NNs) based audio
concept classification systems are still an underexplored research di-
rection.

Interest in NNs and deep architectures has recently been re-
newed due to several advancements in the vision and speech commu-
nity. In particular, the introduction of pre-training methods such as
the unsupervised, greedy layer-wise technique based on Restricted
Boltzmann Machines (RBM) [8], has made the training of networks
with many hidden layers feasible and effective. The RBM tech-
nique has enabled demonstrable improvements in character recog-
nition [9], object recognition [10], information retrieval [11], and
speech recognition [12], just to name a few. As a consequence, Deep
Neural Networks (DNN) and more recently Hierarchical Deep Neu-
ral Networks (H-DNN) have been proven to be effective for several
applications, including speech recognition [13, 14]. The success of
H-DNN is attributed to the intrinsec capabilities of deep learning,
but more importantly, to the analysis of the short and long term au-
dio modulation. Such acoustic information is based on ingesting the
short and long-term context windows to the NNs.

In this paper, we explore H-DNN for acoustic concept classifi-
cation and present its contribution to the field. Our approach is par-
tially inspired by the H-DNN paradigm recently adopted for domain
specific speech recognition [15]. Although H-DNN had promising
results in the speech field, there was no indication of a similar per-
formance in our UGC task. We investigate the capabilities and lim-
itations of H-DNN’s in the context of the UGC application. Specif-
ically, our H-DNN approach relies on short- and long-term cascade
analysis of audio concepts, not included in a standard DNN. Be-
cause H-DNN’s output are probability posteriors, they can be used
as semantic-low-level features for multimedia retrieval systems. In
particular, in [16] we show that these features can indeed be used to



Fig. 1. The proposed Hierarchical Deep Neural Network (H-DNN)
architecture for audio concept classification.

show evidence of concept occurrence on high-level semantic scenes
such as a wedding ceremony, a soccer game or a broadcast news.

The remainder of this paper addresses these contributions and
is broken up as follows. The proposed deep learning architecture is
discussed in Sec. 2. Sec. 3 describes the experimental setup, includ-
ing a description of the corpora. Final results are presented in Sec. 4,
and Sec. 5 concludes the work.

2. DEEP LEARNING OF AUDIO CONCEPTS

Short- and long-term modulations of the H-DNN model are ex-
tremely effective for speech recognition and the same modeling
could benefit audio concept classification. Most audio concepts
such as music, clapping, knocking, laughing and many others are of-
ten characterized by several replicas of similar pattern over the time,
thus suggesting that a long-term analysis of the acoustic concepts
could be convenient. Our specific implementation calls for two NNs
that are incorporated as a cascade into a single H-DNN architecture.
Lastly, using sigmoid-based neurons and a softmax classifier for
the output layer, the neural network, unlike multi-class SVM-based
systems, generates an output set of posterior probabilities. The
proposed two-fold MLP system is depicted in Fig. 1.

2.1. Input Features

The extracted acoustic features are the Mel-Frequency Cepstral Co-
efficients (MFCCs) C0-C12, with energy included, for a total of 14
dimensions, typical for systems like our proposed architecture. Each
feature frame is computed using a 25 ms Hamming window with
a stride size of 10ms per frame shift. After a mean and variance
normalization step, we apply a context window that gathers several
consecutive frames. The importance of the role of the context win-
dow is reported in Sec. 4, showing significant benefits in its usage.
The context window processes 49 consecutive frames (centered at
the 25th frame). Finally, prior to the input layer of the first NN, a
dimensionality reduction step using the Discrete Cosine Transform
(DCT) is applied to de-correlate the information in time. The final
NN input dimensionality consists of 429 features.

2.2. Hierarchical Processing

The first level NN in Fig. 1(a), fed by the input stream described in
Sec. 2.1, converts the low-level features into a higher level represen-
tation. This NN is composed of 3 hidden layers with 2000 neurons
per layer. Because this NN consists of more than 2 hidden layers,
pre-training based on the RBM is important for initialization and

convergence purposes. The output layer, a softmax-based classifier,
outputs a 40 dimensional vector, corresponding to the number of au-
dio concepts provided for classification. Examples of audio concepts
are laughing, clapping, cheering, speech, music and singing. The full
list of the adopted audio concept is reported in [17].

Afterwards, additional processing on the features generated by
the first NN (Fig. 1(a)) is conducted prior to feeding into the second
NN. The long term analysis of the audio concepts is achieved by
further selecting several sparse input frames. In this case, we sample
the features generated by the NN in Fig. 1(a) at the 5 positions: -10,
-5, 0, +5,+10. Hence, the total in input dimensionality of Fig. 1(b) is
200.

The long-term NN Fig. 1(b) is composed of 2 hidden layers with
1000 neurons each. Compared to Fig. 1(a), the NN in Fig. 1(b) em-
ploys a shallower architecture. We justify the implementation choice
due to the simpler task it has to perform. That is, the MLP in Fig. 1(a)
realizes a conversion from low-level to high level features, while
Fig. 1(b) operates on already processed input streams from the pre-
viously trained NN.

2.3. Restricted Boltzmann Machine Pre-Training

Pre-training replaces random initialization of the parameters with a
justified and more convenient weight initialization, without which
it is usually difficult to employ more than one or two hidden lay-
ers using back-propagation training. A number of pre-training tech-
niques have been explored previously, including both discriminative
approaches [18] and unsupervised methods based on a stack of Re-
stricted Boltzmann Machines [19]. We have chosen to use the unsu-
pervised approach, which was successfully used to improve speech
recognition performance for TANDEM [20], bottleneck [21], and
hierarchical bottleneck approaches [14] as well as for hybrid speech
recognition [22].

Next, we trained each adjacent pair of NN layers as an RBM
in an efficient greedy, layer-wise technique, initializing the NN
weights. The derived weights are directly used to initialize the MLP
and, by means of fine-tuning phase carried out using the standard
back-propagation algorithm, a joint optimization of all the layers is
performed. We take advantage of RBM pre-training only over the
first NN in Fig. 1(a), while a random initialization is performed for
the second NN in Fig. 1(b). This choice is connected to the decision
of using a deeper MLP for first level NN as discussed in 2.2. Since
pre-training appears to be useful for NNs with many hidden layers,
no significant improvement could potentially be obtained exploiting
pre-training on the shallower MLP.

3. EXPERIMENTAL SETUP

This section describes the video corpora used for the audio concepts
classification in Sec. 3.1, the GMM and NN training algorithms in
Sec. 3.2 and the evaluation metric in Sec. 3.3.

3.1. Corpora Description

The audio concepts belong to the TRECVID MED 2012 dataset [1],
which contains UGC videos of about three minutes each. The au-
dio from the videos contains environmental acoustics, overlapped
sounds and unintelligible audio among other characteristics. The
manually created annotations are based on three different sources.



First, SRI-Sarnoff [23] set consists of 28 concepts from 291 videos
for a total of 11.6 hours. Second, CMU [7] set consists of 42 con-
cepts from 216 videos taken from MED 2012, totaling 5.6 hours.
Lastly, Stanford [4] set consists of 20 concepts from 1138 videos,
totaling 11.87 hours. The audio concepts are audio trimmed from
the main recording based on the annotation. Concepts have variable
length.

For the experiments described in the paper, we took the total 90
concepts and used 80% of the annotations to train and 20% to test
the NN described in Sec. 4.1 as the baseline, using per-frame concept
accuracy as the evaluation metric. Afterwards, we chose the top 40
concepts with highest accuracy. The reason for the cut off was due
to accuracies been close to zero for the rest of the concepts. This
procedure is described in more detail in [17].

3.2. Neural Network & GMM Systems Training

The NN training and pre-training phases are based on the GPU ver-
sion of the TNet toolkit [24]. Pre-training initializes weights in the
first two hidden layers via RBM (Gaussian-Bernoulli) using a learn-
ing rate of 0.005 with 10 pre-training epochs. The remaining RBMs
(Bernoulli- Bernoulli) use a learning rate of 0.05 with 5 pre-training
epochs. From the training-set, a small cross-validation set (10% of
training data) has been derived for the following back-propagation
training. The fine-tuning phase is performed by a stochastic gra-
dient descent optimizing cross-entropy loss function. The learning
rate, is kept fixed at 0.002 as long as the single epoch increment in
cross-validation frame accuracy is higher than 0.5%. For subsequent
epochs, the learning rate is halved until the cross-validation incre-
ment of the accuracy is less than the stopping threshold of 0.1%.
NN weights and biases are updated per blocks of 1024 frames.

A conventional GMM approach is also used to provide a base-
line comparison with our H-DNN results. The system has two steps:
the creation of the concepts models (training), and the scoring (test-
ing). In the first step the Expectation Maximization (EM) algorithm
updates a pre-trained concept-independent GMM, known as the Uni-
versal Background Model (UBM), to create a 256-mixture GMM for
each audio concept. In the second step, a log-likelihood ratio is used
to obtain a similarity score between each concept-dependent GMM
and the acoustic features of each test audio. The UBM is used in the
likelihood-ratio computation for score normalization.

3.3. Evaluation Metric

Results are quantitatively analyzed with classification frame accu-
racy (F.A.), which is evaluated by comparing the label from the
frame’s highest posterior against its corresponding ground truth la-
bel.

4. EXPERIMENTAL RESULTS

This section provides the quantitative justification for using H-DNNs
by using metrics defined in Sec. 3. Empirical results include rela-
tive performance by sweeping parameters and comparisons to base-
line systems. Sec. 4.1 reports the baselines performance, Sec. 4.2
explores the role of contextual information while Sec. 4.3 explores
multiple architectural considerations in the NN implementation. Fi-
nally, Sec. 4.4 evaluates the entire H-DNN system (including long-
term NN, Fig. 1(b)) by comparing to baselines.

4.1. Baseline Performance

To compare the proposed approach, we have employed two conven-
tional GMM baselines. The first one is based on MFCCs+∆+∆∆
coefficients, while the second system is based on the MFCCs de-
scribed in Sec. 2.1, but adopting context windows of five consecutive
frames. Both the number of iterations and the number of gaussians
are optimized over the cross-validation set. To add to the compari-
son, a shallow NN baseline is also presented. The NN architecture is
composed by a single hidden layer of 1000 neurons, and then fed by
the MFCC coefficients with a context window of nine consecutive
frames. The baseline performances are summarized in Table 1.

System Features F.A.(%)
GMM Baseline 1 42: 14 MFCCs+∆+∆∆ 23.52
GMM Baseline 2 70: 14 * 5 MFCCs 24.07

NN Baseline 126:14 * 9 MFCCs 27.70

Table 1. Audio concepts per-frame classification performance
(F.A.%) for the baseline systems. The GMMs systems used 256
gaussians, while the NN baseline is composed of a single hidden
layer of 1000 neurons.

The shallow NN system has a F.A.(%) of 27.70%, while the best
GMM baseline performance is 24.07%. As discussed in Sec. 4.2, the
performance of the NN is significantly better than the GMM, mainly
due to a better use of the context information (Fig. 2).

4.2. Role of the context windows

In Fig. 2, starting from the same NN architecture of the baseline (one
hidden layer of 1000 neurons), we show the result of sweeping var-
ious context window sizes. As expected, for the NN case, there is
a consistent improvement for progressively larger context windows.
The best performance has been obtained when a context windows
of 33 frames (which correspond to a context of 345 ms with an NN
input dimensionality of 462) is adopted. This setting lead to a per-
frame accuracy percentage of 30.87% corresponding to a relative
improvement of over 28% above the no-context window case. Mean-
while, the NN baseline is outperformed by up to a relative 11%. The
Fig. 2 also shows a logarithmic behaviour, consisting of sharp initial
improvements in performance by adding the closest frames followed
by a saturation. Typical reasons for slowed or discontinued perfor-
mance improvement can be ascribed to both, the deficit of useful
information at temporally distant times and the large dimensionality
problems. For the sake of comparison, the sweeping of the context
windows has been applied for also the GMM baseline. The Fig. 2
clearly shows that increasing the context windows of more than five
consecutive frames lead to a decrease of performance. This trend
suggests that the GMM paradigm is not fully adequate in classifying
high-dimensionality vectors.

To improve the context description for the NN case, we further
extend the capability of the context window by adopting a DCT-
based dimensionality reduction after a longer frame windowing.
Such a transformation also serves to decorrelate the information in-
side the context windows. Table 2 compares various context window
sizes while fixing the input dimensionality of the NN at 462.

The improvement of larger context windows in audio concept
classification is explicit and the general trend is encouraging. In



Fig. 2. Per-frame classification accuracy (%) progression by increas-
ing the context window. The blue markers refer to the NN system,
while the red squares refer to the GMM baseline.

x33 x37 x41 x45 x49 x53
NO DCT 30.87 30.81 30.78 30.75 30.80 30.72

DCT 31.01 31.39 32.00 32.24 32.30 32.27

Table 2. The role of the DCT based dimensionality reduction. For
the DCT case, the input dimensionality of the NN is kept fixed at
462, while the context window which is applied to the input features
is swept from 33 to 53 consecutive frames.

particular, exploiting a context window of 49 frames (which corre-
sponds to about half second of time context), we have improved the
NN baseline of more than 16%. The result is consistent with similar
results obtained for TRAPs [25] and HATs [26] systems, where a 500
ms context information has been exploited to improve speech recog-
nition performance. No improvements has been verified by applying
the DCT-based dimensionality reduction to the GMM baseline.

4.3. Architecture Optimization

Table 3 explores modifications to the system described in Sec. 4.2.
The modifications of the neural network architecture include both
number of hidden layers and number of neurons per hidden layer.
We also studied the impact of RBM pre-training on the audio concept
classification task.

Results show a consistent improvement when more than one
hidden layer has been adopted. Note the significant performance
improvement going from one to two hidden layers. Interestingly,
for our application of concept classification, no substantial improve-
ment arises from employing more than 2 hidden layers. Also a re-
markable improvement occurs when more than 500 neurons are used
per hidden layer. Pre-training, as expected, seems useful only in the
presence of deep and wide architectures, where a large quantity of
parameters have to be estimated. The best performance is obtained
when a network with three hidden layers and 2000 neurons each is
pre-trained with RBM.

500 neurons 1000 neurons 2000 neurons
RND RBM RND RBM RND RBM

1 Layer 29.16 29.14 30.61 30.65 30.81 30.85
2 Layers 31.00 31.11 32.30 32.33 32.80 32.92
3 Layers 31.14 31.15 32.62 32.73 32.68 32.96
4 Layers 31.05 31.25 32.29 32.49 30.20 32.57

Table 3. Optimization of the architecture of NN in Fig. 1(a), the
primary neural network. Rows report the number of hidden layers,
while columns refer to the number of neurons for each hidden layer.
RND shows the per-frame accuracy performance achieved with a
random initialization of the weights, while RBM takes advantage of
pre-training.

4.4. Hierarchical Processing

Table 4 depicts classification performance under various techniques,
defined for each row. The baseline systems introduced in Sec. 4.1
corresponds to the first two rows. The third row, contains the NN
system of Sec.4.2, with a DCT-compacted and 49 consecutive frame
context window. Next is the deeper (three hidden layer) and wider
(2000 neurons per layer) DNN architecture with RBM pre-training
described in Sec.4.3 and depicted in Fig. 1(a) . Lastly, the H-DNN
uses the DNN as its foundation and is incorporated into the hierar-
chical processing introduced in Sec.2.2 and depicted in Fig. 1(a)(b).

Besides the improved performance by using a large context win-
dow, our initial hypothesis of benefiting from a long-term analysis
of the audio concepts is realized. Indeed, audio concepts, such as
music, clapping, knocking, etc. are often characterized by several
replicas of similar pattern over the time, validating the ability of
long-term analysis to better describe such acoustic events. In fact,
the improvement of such a system is a relative 12% over the best
DNN described in Sec. 4.3.

System CW DCT RBM HP F.A.(%)
Baseline GMM x5 no no no 24.07

Baseline NN x9 no no no 27.70
DNN x49 yes yes no 32.96

H-DNN x49 yes yes yes 36.93

Table 4. Audio concepts per-frame classification performance
(F.A.%). The first row refers to the GMM baseline, while the rest
of the rows are obtained by progressively improving the NN base-
line. The CW column reports the adopted context window, while
DCT refers to the presence of the DCT-based dimensionality reduc-
tion. The column RBM refers to the pre-training with RBM , and
finally, HP reports whether the Hierarchical Processing performed
by the second MLP is enabled.

Some examples of the concept classification performance com-
parison between the H-DNN and the baseline NN are: wind (Stan-
ford) 63%-51%, speech (CMU) 68%-58% and metallic noises (SRI)
73%-53%, mumble (CMU) 13%-10%, bird (CMU) 13%-5% and
quite engine (CMU) 6%-3%. Since the H-DNN system is com-
posed of 7 hidden layers, for the sake of comparison a DNN with
the same number of hidden layers and with the same number of neu-
rons should be proposed. Unfortunately, such a comparison is not
feasible since a single DNN with this architecture gets stuck in a
poor local minima during the training phase. This can be due to the



large number of parameters to determine, compared to the size of
the training corpus (curse of dimensionality problem). The H-DNN,
which is based on two different MLPs trained independently, is more
robust against this problem, allowing us to employ several process-
ing layers for classifying the acoustic concepts.

5. CONCLUSIONS

This paper explores for the first time the advantage of deeper archi-
tectures for classifying audio concepts in audio from UGC videos.
The proposed system employs a H-DNN of two cascaded neural
networks, which successfully explores both short-term modula-
tion, through a context window of the first neural network, and
long-term modulation, through the sparse context window of the
H-DNN. Moreover, H-DNN significantly outperforms Gaussian
Mixture Model and Neural Network baselines, as well as Deep
Neural Network-based classification systems. Our research suggests
promising results for deep architectures on audio concepts and im-
mediate future work is currently being conducted on the analysis
of audio concept posteriors as semantic features for an audio-based
video event detection system.
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