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ABSTRACT

In this paper, performance results of two types of Toeplitz
covariance matrix estimators are provided. Concentration in-
equalities for the spectral norm for both estimators have been
derived showing exponential convergence of the error to zero.
It is shown that the same rates of convergence are obtained in
the case where the aggregated matrix of time samples is cor-
rupted by a rank one matrix. As an application based on this
model, source detection by a large dimensional sensor array
with temporally correlated noise is studied.

Index Terms— Toeplitz covariance matrix, concentration
inequalities, correlated noise, source detection.

1. INTRODUCTION

Stationary processes are used in many fields of signal pro-
cessing. A fundamental task is to estimate the covariance
matrix of these processes. Let (vt)t∈Z be a complex cir-
cularly symmetric Gaussian stationary process with zero
mean and covariance function (rk)k∈Z with rk = E[vt+kv

∗
t ]

and rk → 0 as k → ∞. Consider N independent real-
izations (v1,t)t, ..., (vN,t)t of (vt)t∈Z over the time window
t ∈ {0, . . . , T − 1}, and stack the observations in a matrix
VT = [vn,t]

N−1,T−1
n,t=0 . We can write VT = WTR

1/2
T , where

WT ∈ CN×T has independent CN (0, 1) (standard circularly
symmetric complex Gaussian) entries and R1/2

T is any square
root of the Hermitian nonnegative definite Toeplitz T × T
matrix defined by RT , [ri−j ]0≤i,j≤T−1. The objective is to
estimate RT from VT .

Recently, from the increasing interest to large dimen-
sional array processing, this estimation problem has drawn a
renewed attention considering the high dimensional setting
for which both N and T are large. Generally the estimation
approaches are based on the biased and unbiased estimates
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r̂bk,T and r̂uk,T for rk, respectively defined by

r̂bk,T =
1

NT

N−1∑
n=0

T−1∑
t=0

vn,t+kv
∗
n,t10≤t+k≤T−1

r̂uk,T =
1

N(T − |k|)

N−1∑
n=0

T−1∑
t=0

vn,t+kv
∗
n,t10≤t+k≤T−1

where 1A is the indicator function on the set A. Depend-
ing on the relative rate of growth of N and T , the estimates
R̂bT = [r̂bi−j,T ]0≤i,j≤T−1 and R̂uT = [r̂ui−j,T ]0≤i,j≤T−1 may
not be consistent. The estimation approaches developed dur-
ing the last decade propose all to build banded or tapered ver-
sions of the estimated matrix R̂T by down-scaling estimates
of entries sufficiently away from the diagonal [1, 2, 3, 4, 5].
These give rise for instance to the consistent estimate R̂γ,T =

[[R̂T ]i,j1|i−j|≤γ ] for some well-chosen functions γ(T ) usu-
ally satisfying γ(T )→∞ and γ(T )/T → 0. These methods
however suffer from the following main limitations: (i) they
assume the a priori knowledge of the rate of decrease of rk
(and restrict these rates to specific classes); (ii) the results are
asymptotic in nature and do not provide explicit rules for se-
lecting γ(T ) for practical finite values of N and T ; (iii) the
operations of banding and tapering do not guarantee the pos-
itive definiteness of the resulting covariance estimate.

In the present paper, the only assumption on rk is that∑∞
k=−∞ |rk| < ∞. The non banded estimates of RT are

given by R̂bT and R̂uT and the consistence of these estimates is
obtained thanks to the choice N,T → ∞ with N/T → c ∈
(0,∞). This setting is more practical in applications as long
as both the finite values N and T are large and of the same
order of magnitude. The contribution of this work consists in
the establishment of concentration inequalities for the errors
in spectral norm ‖RT −R̂bT ‖ and ‖RT −R̂uT ‖. The results are
then generalized to the case where VT is replaced by VT +PT
for a rank-one matrix PT and we show that the concentration
inequalities remain identical. As an application of the latter,
we study a single source detection (modeled through PT ) by
an array of N sensors embedded in a temporally correlated
noise (modeled by VT ) performed in two steps. First, the ma-
trixRT is estimated from VT+PT giving R̂bT or R̂uT which are
both nonnegative definite with probability one. Then this es-



timate is used as a whitening matrix, before applying a gener-
alized likelihood ratio test (GLRT) procedure on the whitened
observation.

The remainder of the article is organized as follows. The
concentration inequalities for both biased and unbiased esti-
mates are presented in Section 2. The extension to the rank-
one perturbation model is provided in Section 3 and applied
in the practical context of source detection in Section 4.

2. PERFORMANCE OF COVARIANCE MATRIX
ESTIMATORS

2.1. Model and assumptions

Let (rk)k∈Z be a doubly infinite sequence of covariance coef-
ficients. For any T ∈ N, let RT be a Hermitian nonnegative
definite Toeplitz matrix

RT = T (r−(T−1), . . . , rT−1) ,


r0 r1 . . . rT−1

r−1
. . . . . .

...
...

. . . . . . r1
r1−T . . . r−1 r0

 .

Given N = N(T ) > 0, consider the matrix model

VT = [vn,t]
N−1,T−1
n,t=0 = WTR

1/2
T (1)

where WT = [wn,t]
N−1,T−1
n,t=0 has independent CN (0, 1) en-

tries and R1/2
T any square root of RT . It is clear that rk =

E[vn,t+kv
∗
n,t] for any t, k, and n ∈ {0, . . . , N − 1}.

To pursue, we need the following two assumptions.

Assumption 1. The covariance coefficients rk are absolutely
summable and r0 6= 0.

With this assumption, the covariance function

Υ(λ) ,
∞∑

k=−∞

rke
−ıkλ, λ ∈ [0, 2π)

is continuous on the interval [0, 2π]. From [6, Lemma 4.1],
‖RT ‖ ≤ ‖Υ‖∞ with ‖X‖ standing for the spectral norm for
a matrix and Euclidean norm for a vector, and ‖ · ‖∞ is the
sup norm of a function. Hence, Assumption 1 implies that
supT ‖RT ‖ <∞.

We assume the following asymptotic regime denoted as
“T →∞”:

Assumption 2. T →∞ and N/T → c > 0.

2.2. Main results

Our objective is to study the performance of two estimators
of the covariance function considered in the literature and de-

fined as

r̂bk,T =
1

NT

N−1∑
n=0

T−1∑
t=0

vn,t+kv
∗
n,t10≤t+k≤T−1 (2)

r̂uk,T =
1

N(T − |k|)

N−1∑
n=0

T−1∑
t=0

vn,t+kv
∗
n,t10≤t+k≤T−1. (3)

Since Er̂bk,T = (1 − |k|/T )rk and Er̂uk,T = rk, the estimate
r̂bk,T is biased while r̂uk,T is unbiased. Define also

R̂bT , T (r̂b−(T−1),T , . . . , r̂
b
(T−1),T ) (4)

R̂uT , T (r̂u−(T−1),T , . . . , r̂
u
(T−1),T ). (5)

The advantage of the estimate R̂uT is the fact that it is asymp-
totically unbiased while the estimate R̂bT is structurally non-
negative definite. The following theorems provide the results
on the spectral behavior of these matrices under the form of
concentration inequalities on the random variables ‖R̂bT −
RT ‖ and ‖R̂uT −RT ‖ [7]:

Theorem 1. Let Assumptions 1 and 2 hold true and let R̂bT
be defined as in (4). Then, for any x > 0,

P
[∥∥∥R̂bT −RT∥∥∥ > x

]
≤

exp

(
−cT

(
x

‖Υ‖∞
− log

(
1 +

x

‖Υ‖∞

)
+ o(1)

))

where o(1) is with respect to T and depends on x.

Proof. The proof is available in [7].

Theorem 2. Let Assumptions 1 and 2 hold true and let R̂uT
be defined as in (5). Then, for any x > 0,

P
[∥∥∥R̂uT −RT∥∥∥ > x

]
≤ exp

(
− cTx2

4 ‖Υ‖2∞ log T
(1 + o(1))

)

where o(1) is with respect to T and depends on x.

Proof. A sketch of the proof is given in Section 5.

Remark 1. The sketch of the proof is provided only for The-
orem 2 since it presents more difficulties than the proof of
Theorem 1.

From these theorems, the error in spectral norm is bounded
by an exponentially decreasing function of T . As conse-
quence, obtained by the Borel-Cantelli lemma, ‖R̂bT−RT ‖ →
0 and ‖R̂uT −RT ‖ → 0 almost surely as T →∞. The slower
rate of decrease of T/ log(T ) in the unbiased estimator expo-
nent is due to the increased inaccuracy in the estimates of rk
for k close to T − 1. Figure 1 shows an empirical evaluation
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Fig. 1. Error probability of the spectral norm for x = 2,
c = 0.5, [RT ]k,l = a|k−l| with a = 0.6.

by Monte Carlo simulations of P[‖R̂T −RT ‖ > x] (Biased
and Unbiased) with R̂T ∈ {R̂bT , R̂uT } compared against the
theoretical exponential bounds of Theorems 1 and 2 (Bi-
ased theory and Unbiased theory). We observe that the rates
obtained in Theorems 1 and 2 converge asymptotically to
optimal.

3. COVARIANCE MATRIX ESTIMATION UNDER
THE “SIGNAL PLUS NOISE” MODEL

Consider now the following model:

YT = [yn,t]
N−1,T−1
n,t=0 = PT + VT (6)

where the N × T matrix VT is unchanged and where PT sat-
isfies the following assumption:

Assumption 3. PT , hTs
H
TΓ

1/2
T where hT ∈ CN is a

deterministic vector such that supT ‖hT ‖ < ∞, the vector
sT = (s0, . . . , sT−1)T ∈ CT is a random vector indepen-
dent of WT with distribution CN (0, IT ), and Γ

1/2
T satisfies

(Γ
1/2
T )HΓ

1/2
T = ΓT where ΓT = [γij ]

T−1
i,j=0 is a T ×T Hermi-

tian nonnegative matrix with supT ‖ΓT ‖ <∞.

The model can be seen as a Gaussian spatially white and
temporally correlated noise with stationary temporal correla-
tions perturbed by a rank one signal which can be also tem-
porally correlated. The aim is still to estimate RT from YT .
We obtain the same expressions for the estimates given by (2)
or (3) with only difference that the samples vn,t are replaced
by the samples yn,t. We have the following theorem proved
in [7]:

Theorem 3. Consider the model (6) and let Assumptions 1–3
hold true. Consider respectively the estimates

r̂bpk,T =
1

NT

N−1∑
n=0

T−1∑
t=0

yn,t+ky
∗
n,t10≤t+k≤T−1

and

r̂upk,T =
1

N(T − |k|)

N−1∑
n=0

T−1∑
t=0

yn,t+ky
∗
n,t10≤t+k≤T−1.

Let R̂bpT = T (r̂bp(1−T ),T , . . . , r̂
bp
(T−1),T ) and R̂upT = T (r̂up(1−T ),T ,

. . . , r̂up(T−1),T ) be the Toeplitz matrices built from these esti-
mates. Then for any x > 0, the following inequalities hold
true:

P
[∥∥∥R̂bpT −RT∥∥∥ > x

]
≤ exp

(
−cT

(
x

‖Υ‖∞
− log

(
1 +

x

‖Υ‖∞

)
+ o(1)

))
and

P
[∥∥∥R̂upT −RT∥∥∥ > x

]
≤ exp

(
− cTx2

4 ‖Υ‖2∞ log T
(1 + o(1))

)
.

Note that these results are similar to those presented in
Section 2. The small rank perturbation PT of the noise term
VT does not affect too much the estimators of RT .

4. APPLICATION TO SOURCE DETECTION

Consider a sensor network composed of N sensors with zero
(hypothesis H0) or one (hypothesis H1) source signal. The
stacked signal matrix YT = [y0, . . . , yT−1] ∈ CN×T ob-
served during a time window of size T is modeled as

YT =

{
VT , H0

hTs
H
T + VT , H1

(7)

where sHT = [s∗0, . . . , s
∗
T−1] are (hypothetical) independent

CN (0, 1) signals transmitted through the constant channel
hT ∈ CN , and VT = WTR

1/2
T ∈ CN×T models a stationary

noise matrix as in (1).
Most detection methods assume that a training pure noise

sequence is available at the receiver. Here, without such an as-
sumption, we proceed to an online signal detection test based
on YT , by exploiting the consistence established in Theo-
rem 3. First RT is estimated by R̂T ∈ {R̂bpT , R̂

up
T }, which

is then used as a whitening matrix for YT :

YT R̂
−1/2
T =

{
WTR

1/2
T R̂

−1/2
T , H0

hTs
H
T R̂
−1/2
T +WTR

1/2
T R̂

−1/2
T , H1.

(8)

Since ‖RT R̂−1T − IT ‖ → 0 almost surely (by Theorem 3 as
long as infλ∈[0,2π) Υ(λ) > 0), for T large, the decision on the
hypotheses (8) can be handled by the generalized likelihood
ratio test (GLRT) [8] by approximating WTRT R̂

−1/2
T as a

purely white noise. We then have the following result [7]:



Theorem 4. Let R̂T be any of R̂bpT or R̂upT strictly defined
in Theorem 3 for YT now following model (7). Assume
infλ∈[0,2π) Υ(λ) > 0 and lim inf

T
‖hT ‖2 Tr

(
R−1T

)
/T ≥

√
c

and define the test

α =
N
∥∥∥YT R̂−1T Y H

T

∥∥∥
Tr
(
YT R̂

−1
T Y H

T

) H0

≶
H1

γ (9)

where γ ∈ R+ satisfies γ > (1 +
√
c)2. Then, as T →∞,

P [α ≥ γ]→
{

0 , H0

1 , H1.

Recall from [8] that the decision threshold (1 +
√
c)2

corresponds to the almost sure limiting largest eigenvalue
of 1

TWTW
H
T , that is the right-edge of the support of the

Marčenko–Pastur law.
In the following we provide the simulations results for

the performance of the test (9) with the noise modeled as
an autoregressive process of order 1 with parameter a, i.e.
[RT ]k,l = a|k−l|. The channel is written as a steering vector
hT =

√
p/T [1, . . . , e2iπθ(T−1)] with θ = 10◦ and p a power

parameter.
Figure 2 depicts the detection error 1 − P[α ≥ γ|H1] of

the test (9) for a false alarm rate (FAR) P[α ≥ γ|H0] = 0.05

under R̂T = R̂bpT (Biased) or R̂T = R̂upT (Unbiased) com-
pared against the estimator that assumes RT perfectly known
(Oracle), i.e. that sets R̂T = RT in (9), and against the GLRT
test that wrongly assumes temporally white noise (White), i.e.
that sets R̂T = IT in (9). In the same setting as Figure 2, we
now fixN = 20, T = N/c = 40 and plot the power of the test
(9) versus signal-to-noise ratio (SNR) in Figure 3. The results
are compared to the methods which estimate RT from a pure
noise sequence called Biased PN (pure noise) and Unbiased
PN. We see that the proposed online method results are close
to the method with PN estimation of RT . Moreover, both
figures suggest a close match in performance between Ora-
cle and Biased, while Unbiased shows weaker performance.
The gap between Biased and Unbiased confirms the theoreti-
cal conclusions.
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Fig. 2. Detection error versus N with FAR= 0.05, p = 1,
SNR= 0 dB, c = 0.5, and a = 0.6.
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Fig. 3. Power of detection tests versus SNR (dB) with FAR=
0.05, N = 20, c = 0.5, and a = 0.6.

5. SKETCH OF THE PROOF OF THEOREM 2

Define

Υ̂u
T (λ) ,

T−1∑
k=−(T−1)

r̂uk,T e
ıkλ and ΥT (λ) ,

T−1∑
k=−(T−1)

rke
ıkλ.

From [6, Lemma 4.1] for all x > 0

P
[∥∥∥R̂uT −RT∥∥∥ > x

]
≤ P

[
sup

λ∈[0,2π)

∣∣∣Υ̂u
T (λ)− EΥ̂u

T (λ)
∣∣∣ > x

]

where ΥT (λ) = EΥ̂u
T (λ) since the estimates r̂uk,T are unbi-

ased. In order to control the term sup
λ∈[0,2π)

∣∣∣Υ̂u
T (λ)− EΥ̂u

T (λ)
∣∣∣

we proceed as follows. Choosing β > 2, let λi = 2π i
bTβc ,

i ∈ I, be a regular discretization of the interval [0, 2π] with
I =

{
0, . . . , bT βc − 1

}
. We have

sup
λ∈[0,2π)

∣∣∣Υ̂u
T (λ)− EΥ̂u

T (λ)
∣∣∣

≤ max
i∈I

sup
λ∈[λi,λi+1]

∣∣∣Υ̂u
T (λ)− Υ̂u

T (λi)
∣∣∣+ max

i∈I

∣∣∣Υ̂u
T (λi)− EΥ̂u

T (λi)
∣∣∣

+ max
i∈I

sup
λ∈[λi,λi+1]

∣∣∣EΥ̂u
T (λi)− EΥ̂u

T (λ)
∣∣∣ , χ1 + χ2 + χ3.

The concentration inequalities on the random terms χ1 and
χ2 and a bound on the deterministic term χ3 are given by the
following lemmas:

Lemma 1. There exists a constant C > 0 such that if T is
large enough, the following inequality holds:

P [χ1 > x] ≤ exp

(
−cT 2

(
xT β−2

C
√

log T
− log

xT β−2

C
√

log T
− 1

))
.

Lemma 2. The following inequality holds:

P (χ2 > x) ≤ exp

(
− cx2T

4 ‖Υ‖2∞ log T
(1 + o(1))

)
.



Lemma 3. χ3 ≤ CT−β+2
√

log T .

The proof of Lemma 1 is based on the use of a Lipschitz
property of some function of λ. Observe that for β > 2, as
T →∞, χ1 is neglected as well as the deterministic term χ3.
We provide hereafter the proof of Lemma 2 since it sets the
final rate of convergence. The proof is based on three main
steps. The first step is the following result:

Lemma 4. The following fact holds:

Υ̂u
T (λ) = dT (λ)H

(
V H
T VT
N

�BT
)
dT (λ)

EΥ̂u
T (λ) = dT (λ)H (RT �BT ) dT (λ)

where dT (λ) = 1/
√
T
[
1, e−ıλ, . . . , e−ı(T−1)λ

]T
, � is the

Hadamard product of matrices, and

BT ,

[
T

T − |i− j|

]
0≤i,j≤T−1

satisfying ‖BT ‖ ≤
√

2T (
√

log T + C) with the constant C
independent of T .

The main difficulty of this proof relies on the fact that BT
has an unbounded spectral norm. The second step is the appli-
cation of the following result used to obtain a more tractable
expression of Υ̂u

T (λ):

Lemma 5. Let x, y ∈ Cm and matrices A,B ∈ Cm×m.
Then

xH(A�B)y = Tr(DH
xADyB

T)

where Dx = diag(x) and Dy = diag(y).

From Lemma 4 and Lemma 5, after some simple manip-
ulations, we get

Υ̂u
T (λ) =

1

N

N−1∑
n=0

wH
nQT (λ)wn

whereQT (λ) , R
1/2
T DT (λ)BTDT (λ)H(R

1/2
T )H withDT (λ)

, diag(dT (λ)) and WT = [wH
0 , . . . , w

H
N−1]. Now we deal

with the matrix Q(λ) with a smaller spectral norm (in com-
parison to that of BT ) bounded by

√
2‖Υ‖∞(log T )1/2 + C

where the constant C is independent of λ. The third step of
the proof consists in writing the eigenvalue decomposition of
QT (λi) = UTΣTU

H
T with ΣT = diag(σ0, . . . , σT−1). Since

UT is unitary and WT has independent CN (0, 1) elements,
we get:

Υ̂u
T (λ)

L
=

1

N

N−1∑
n=0

T−1∑
t=0

|wn,t|2σt

where L= denotes equality in law. After applying the union
bound, the rest of the proof is based on dealing with the term

P
(

Υ̂u
T (λi)− EΥ̂u

T (λi) > x
)

(for further details see [7]).
From the Markov inequality and the Chernoff bound, for all
0 ≤ τ < inf

t

N
σt

and x > 0, we obtain:

P
(

Υ̂u
T (λi)− EΥ̂u

T (λi) > x
)

≤ exp
(
−τ
(
x+

T−1∑
t=0

σt

)
−N

T−1∑
t=0

log
(

1− σtτ

N

))
≤ exp

(
−N

(τx
N
− τ2

2N2

T−1∑
t=0

σ2
t

))
exp
(
N

T−1∑
t=0

∣∣∣R3

(σtτ
N

)∣∣∣)
where log(1−x) = −x− x2

2 +R3(x) with |R3(x)| ≤ |x|3
3(1−ε)3

when |x| < ε < 1. We shall manage this expression and
to control the term exp(N

∑
|R3(·)|). Choosing τ = axT

log T ,
a > 0 we get the result.
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