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ABSTRACT
This paper is focused on the decentralized localization prob-

lem of mobile sensors in wireless sensor networks. Based on a

combined localization technique, it uses accelerometer, gyro-

scope and fingerprinting information to solve the positioning

issue. Using the sensors mobility, the proposed method com-

putes first estimates of sensors positions. It then proceeds to

a decentralized localization scheme, where the network is di-

vided to different zones. RSSIs fingerprints are jointly used

with mobility information in order to compute position esti-

mates. Final position estimates are obtained by means of in-

terval analysis where all uncertainties are considered through-

out the estimation process.

Index Terms— Fingerprints, interval analysis, localiza-

tion, mobility, wireless sensor networks

1. INTRODUCTION

Wireless Sensor Networks (WSNs) are networks composed

of small devices, having sensing, computing and communica-

tion units [1]. In almost all applications of WSNs, knowing

the sensors positions is a key issue, since all sensed data are

tightly related to the geographical locations where measure-

ments are made. Different approaches have been proposed

for sensors localization. These approaches are mainly anchor-

based methods, in which some sensors, called anchors, have

known positions and the others, called nodes, need to be lo-

calized by exchanging information with anchors.

Among anchor-based localization methods, some are

based on the Received Signal Strength Indicator (RSSI) [2],

performing distance estimation or connectivity detection.

While distance estimation techniques convert the RSSIs to

distances using the channel pathloss model [3], connectivity-

based methods compare RSSIs to power thresholds, lead-

ing to more robust computations. Other RSSI-anchor-based

methods collect scenario information [4], commonly known

as fingerprinting information. Here characteristics, like con-

tour, colors, RSSI and many others, are gathered to model the

state of the environment. In our previous work [5], we pro-

posed a centralized localization algorithm using fingerprints,

computations being performed in a central unit.

This paper proposes a decentralized localization tech-

nique using fingerprinting and mobility information. Being a

decentralized approach, it consists of dividing the whole area

into different zones, having each a central calculator. A con-

figuration phase is first needed, before starting the localization

process, to collect RSSIs at different positions in each zone.

A mobile node collects then RSSIs from anchors at each time

step, and sends them to the calculators neighboring it, where

local position estimations are computed using the Weighted

K-Nearest Neighbors (WKNN) [6]. Local estimates are then

combined leading to a global one. Moreover, nodes are

equipped with accelerometers and gyroscopes [7], yielding

their accelerations and orientations respectively. These infor-

mation are used with a third-order mobility model to compute

another position estimate for each node. Both estimates are

finally combined using interval analysis [8], leading to boxes

including the real positions of the mobile nodes. The novelty

of this method compared to [5] remains in its decentralized

nature, in using gyroscope and in considering a third-order

mobility model.

This paper is organized as follows. Section II introduces

the localization methodology. Section III illustrates the com-

bination algorithm with interval analysis technique. In Sec-

tion IV, simulation results and comparison experiments are

discussed whereas Section V concludes this paper.

2. DESCRIPTION OF THE METHODOLOGY

The proposed method is an anchor-based decentralized

technique for localization in a D-dimensions surveillance

area, with D = 2 or 3 for a two-dimensional or a three-

dimensional area respectively. This kind of method con-

siders two types of sensors: anchors and nodes. The an-

chors are fixed beforehand with known positions, denoted

by ai = (ai,1, ..., ai,D) , i ∈ {1, ..., Na}. In contrary, the

nodes are fixed or mobile with unknown positions, denoted

by xj(t) = (xj,1(t), ..., xj,D(t)) , j ∈ {1, ...Nx}. In order to
localize the nodes in a decentralized manner, the surveillance

area is divided into NZ zones, set according to the unregu-

lated configuration of the area or else equally [9], as shown in

Figure 1. Each zone is equipped with a zone center calculator

for gathering and computing the zone’s information. Calcu-

lators, denoted by cz = (cz,1, ..., cz,D) , z ∈ {1, ..., NZ},
could be small computers or sensors of the network with

more complex computation and storage capabilities.
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Fig. 1. Repartition of anchors, reference positions and calcu-

lators in the surveillance area.

Now that the physical entities of the network are defined,

let us consider the mobility issue of the nodes. Indeed, one

could track nodes’ trajectories by equipping them with ac-

celerometers. However, these devices yield instantaneous

nodes’ accelerations in their coordinate systems. Being able

to rotate and to have accelerations in the Global Coordi-

nate System (GCS) of the surveillance area, nodes are also

equipped with gyroscope [7]. These devices yield the orien-

tation of the nodes with respect to the GCS. Measurements

of both devices are then combined, leading to nodes accel-

erations in the GCS. These quantities are then used, with a

third-order mobility model, to compute first position esti-

mates of the nodes.

Second estimates could be obtained by using fingerprint-

ing information. To this end, the anchors broadcast signals

over the network, with the same initial powers. Signals pow-

ers decrease with the increase of their traveled distances,

which means that a given position within the surveillance

area would be characterized theoretically by a unique set of

Received Signal Strength Indicators (RSSIs), each from an

anchor, and this according to its distances to the anchors. One

is then able to model the network with RSSI-fingerprints,

associating RSSIs to positions in the network [4]. To this

end, and having a decentralized network with NZ zones,

Np.z reference positions are uniformly generated in each

zone z, z ∈ {1, ..., NZ}. These positions are denoted by

pn.z = (pn,1.z, ..., pn,D.z), where n ∈ {1, ..., Np.z}. Figure 1
shows an example of a repartition of anchors, calculators and

reference positions over the surveillance area. By putting

a sensor consecutively at the reference positions, one could

measure the RSSIs of all anchors signals at these positions.

Let ξpn,i.z be the power of the signal emitted by the anchor
i and received at the reference position pn.z of the zone z.
These RSSIs are set in a vector given by

ξpn.z =
(

ξpn,1.z , ..., ξpn,Na.z
)

, z ∈ {1, ..., NZ}.

This leads toNZ databases, the z-th one havingNp.z couples
(

pn.z, ξpn.z
)

, where n ∈ {1, ..., Np.z} and z ∈ {1, ..., NZ}.
The databases are stored in their corresponding calculators,

to be used in the following for localization. Once the finger-

printing databases are configured, nodes travel in the surveil-
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Fig. 2. Illustration of rotations in three-dimension space(D =
3).

lance area and collect RSSI information. Their RSSI vec-

tors would be used with the databases to compute local esti-

mates by the calculators. Local estimates are then combined

together, then with the first mobility estimates leading to more

accurate ones.

3. INTERVAL-BASED ALGORITHM

The interval analysis [8] provides an outer approximation of

the solution of an inequality problem. Applied to nodes po-

sitioning in wireless sensor networks, solutions would be D-
dimensional boxes including the real solution of the problem,

D being the dimension of the surveillance area. In the follow-

ing, it will be shown how the incertitude over accelerations,

orientations and RSSI measurements could be considered to

solve the localization problem.

3.1. Mobility estimates

Each node j is equipped with an accelerometer and a gyro-

scope, as discussed previously. Let γ′j(t) be the instanta-

neous acceleration vector of the node j at time t, given by

its accelerometer according to the Node’s Coordinate System

(NCS). When a certain rotation occurs to a node in a real sce-

nario, its NCS will be modified from the Global Coordinate

System (GCS), and γ′j(t) will not be anymore in the GCS,

and thus using it to compute the absolute coordinates of the

node in the GCS will not be accurate. Consequently, at each

time t, a node j measures as well its orientation angles us-
ing its gyroscope. Considering the case of a three-dimensions

space (D = 3), the gyroscope of a node j at time t yields
three angles denoted by θj(t), ψj(t) and φj(t). These angles
represent respectively the single rotation angles of the NCS

with respect to the GCS around the 3rd coordinate axis, the

1st one and the second one, and this counterclockwise. See

Figure 2 for illustration, where 1, 2 and 3 denote the axes of

the GCS and 1’, 2’ and 3’ denote the axes of the NCS. Let

γj(t) be the nodes absolute 3D acceleration vector according

to the GCS. Then

γj(t) = R (θj(t), ψj(t), φj(t))γ
′
j(t), (1)



where the first column of the 3D rotation matrix R is given
by





cos θj cosφj
cos θj sinψj sinφj + sin θj cosψj

− cos θj cosψj sinφj + sin θj sinψj



 ,

and its second and third ones are defined respectively by




− sin θj cosφj
− sin θj sinψj sinφj + cos θj cosψj

sin θj cosψj sinφj + cos θj sinψj



 and





sinφj
− sinψj cosφj
cosψj cos φj



 .

Note that the (t) notation is withdrawn in the definition of the
columns of R for clarity. In a two-dimensions space (D =
2), only the rotation angle θj(t) is considered, leading to a

simplified relationship with measured acceleration values,

(

γj,1(t)
γj,2(t)

)

=

(

cos θj(t) − sin θj(t)
sin θj(t) cos θj(t)

)(

γ′j,1(t)
γ′j,2(t)

)

.

(2)

Once the quantities of accelerations are acquired in the

GCS with aid of accelerometer and gyroscope, they are used

in the mobility equation to estimate the movement trajectory.

To this end, we propose a novel and enforced third-order

movement equation as follows,

x̂j(t) = x̂j(t − 1) +∆t ∗ ν̂j(t − 1) +
1

2
∗∆t2 ∗ γj(t − 1)

+
1

6
∗

γj(t) − γj(t − 1)

∆t
∗∆t3,

(3)

where x̂j(t) is the estimated position of the node j at time t,
ν̂j(t−1) is the velocity vector of the node j at t−1 computed
at iteration t by

ν̂j(t) = ν̂j(t−1)+∆t∗γj(t−1)+
1

2
∗∆t2 ∗

γj(t) − γj(t− 1)

∆t
, (4)

and ∆t is the time interval between two consecutive time-

steps. It is worth noting that this model assumes that between

two consecutive time-steps t − 1 and t, the accelerations

are linear going from γj(t − 1) to γj(t), with a slope of
γj(t)−γj(t−1)

∆t
. With a small ∆t, this model works very well,

since the approximated acceleration curves becomes very

close to the real ones.

Now to solve the problem in the interval framework, we

introduce an incertitude ±δγ to the acceleration information

γ′j(t) as follows,

[γ′j ](t) = Πd=D
d=1 [γ′j,d](t) = Πd=D

d=1 [γ′j,d(t)− δγ , γ
′
j,d(t)+ δγ ],

(5)

where symbol Π indicates the cartesian product. The value

of δγ should be chosen in the way to have the correct accel-

eration vector falling within the D-dimensional box [γ ′j ](t).

Let γ̃′j,d(t), d ∈ {1, ..., D}, be the correct exact values of
the accelerations of the node j at time t, we have a relation-
ship γ′j,d(t) = γ̃′j,d(t) + ǫγ′ j,d(t), where the acceleration
measurement noises ǫγ′ j,d(t) is assumed to be gaussian with
zero-mean and standard deviation σγ′ . The value of σγ′ could
be obtained by doing a calibration of the accelerometer be-

fore the localization. The probability of γ̃′j,d(t) falling within

[γ′j,d](t) is computed by

Pr
(

γ̃′j,d(t) ∈ [γ′
j,d

(t)]
)

= Pr
(

γ′
j,d

(t) − δ′γ ≤ γ̃′j,d(t) ≤ γ′
j,d

(t) + δ
γ′

)

= Pr
(

−δ
γ′ ≤ ǫ

γ′ j,d(t) ≤ δ
γ′

)

= erf





δ
γ′

σ
γ′
√

2



 ,

(6)

where erf (·) is the Gauss-error function. We could ensure

at 99.7% that the box [γ′j ](t) enclose the real acceleration

if incertitude δγ′ is set for instance to 3σγ′ . Similarly, an

incertitude ±δΘd , d ∈ {1, ..., D}, helps schedule the boxes
of rotation angles now that the calibration of gyroscope could

neither be ignored as

[Θj ](t) = Πd=D
d=1 [Θj,d](t) = Πd=D

d=1 [Θj,d(t)− δΘd,Θj,d(t)+ δΘd ],
(7)

where d ∈ {1, ..., D}, Θj = (θj , ψj , φj). Substituting

Eq.(5)(7) in the equations given before and by using the in-

terval toolbox, one could compute the acceleration boxes in

the GCS, denoted by [γj ](t). Consequently, by rewriting the
model Eq.(3) in the interval framework, the mobility estimate

of the node position could be boxed as follows,

[x̂j ]m(t) = [x̂j ](t− 1) +∆t ∗ [ν̂j ](t− 1)

+ 1
2
∗∆t2 ∗ [γj ](t− 1) + 1

6
∗

[γj ](t)−[γj ](t−1)

∆t
∗∆t3,

(8)

where ν̂j(t) is boxed by [ν̂j ](t) = [ν̂j ](t−1)+∆t∗ [γj ](t−

1) + 1
2 ∗∆t

2 ∗
[γj ](t)−[γj ](t−1)

∆t
and [x̂j](t) denotes the final

estimated box obtained at time t by combining all informa-
tion. If necessary, the exact first estimate position could be

given at the center of the box [x̂j ]m(t). Nevertheless, we just
need the box [x̂j ]m(t) for the following process.

3.2. Decentralized fingerprinting estimates

In addition to mobility, nodes take advantage of signals RSSIs

to be localized. Let ξxj,i(t) be the RSSI of the signal emitted
by the anchor i and received by the node j at time t, j ∈
{1, ..., Nx} and i ∈ {1, ..., Na}. By storing these values in a
vector, one obtains the online RSSI vectors denoted by

ξxj(t) =
(

ξxj,1(t), ..., ξxj,Na (t)
)

, j ∈ {1, ..., Nx}. (9)

Each node sends its RSSI online vector to the calculators

neighboring it. Let Ij(t) be the set of indices of the calcu-
lators neighboring the node j at time t. Now, to solve the

problem in the intervals framework, we introduce the incer-

titude ±δξ over the RSSI values. Indeed, in a perfect envi-

ronment, the RSSI should be constant, with no incertitude,

for a fixed traveled distance by the signal. However, in real

environments, RSSIs might vary due to interference, noise,

multipath, etc. For this reason, and in order to define δξ, sev-
eral measurements of RSSIs at several distances are needed,

before starting the localization. This could be performed in

the configuration phase, where a node could be put for a cer-

tain duration at each reference position and a set of RSSI

vectors is collected for each position. The highest differ-

ence between RSSIs vectors is then computed per position



and then δξ could be defined as the maximal difference over
all the positions. δξ is then a vector of Na scalar incerti-

tudes, δξ = (δξ,1, ..., δξ,Na). Another way to compute δξ
consists of using the standard deviations of measured RSSIs.

Once defined, all RSSIs vector could be rewritten in the in-

terval framework as multi-dimensional intervals, or boxes, by

[ξpn.z ] = [ξpn,1.z ]×· · ·×[ξpn,Na.z ] and [ξxj ](t) = [ξxj,1 ](t)×
· · ·× [ξxj,Na ](t), where [ξpn,i.z ] = [ξpn,i.z−δξ,i, ξpn,i.z+δξ,i]
and [ξxj,i ](t) = [ξxj,i(t)− δξ,i, ξxj,i(t) + δξ,i].

In order to compute local estimates for nodes posi-

tions, the Weighted K-Nearest Neighbors (WKNN) algo-

rithm is applied on calculators [6]. Indeed, for each node j,
j ∈ {1, ..., Nx}, its neighboring calculators of Ij(t) com-
pute the Euclidean distances ‖[ξxj ](t), [ξpn.z ]‖ in the interval
framework between the online RSSI box and their reference

RSSI boxes. Then, according to the WKNN algorithm, the

K indices of reference positions yielding the K smallest

distances centers are selected and stored in Ipj.z (t), and this
for each zone z ∈ Ij(t). Local position estimates are then

computed as follows,

[x̂j.z](t) =
∑

n∈Ipj.z (t)

[ωj,n.z](t) · pn.z, z ∈ Ij(t), (10)

where [ωj,n.z](t) is normalized and chosen in the way to be
inversely proportional to the RSSI distances as [ωj,n.z](t) =

‖[ξxj ](t),[ξpn.z ]‖
−α

∑

u∈Ipj.z (t) ‖[ξxj ](t),[ξpu.z ]‖
−α , where α denotes a parameter

to be tuned. Fusion of all the local estimates gives the second

estimated box as follows,

[x̂j ]f (t) =
∑

z∈Ij(t)

λj.z(t) · [x̂j.z](t), j ∈ Nx, (11)

where λj.z(t) are the weights in the exponential scheme given

by λj.z(t) =
ξcj.z

(t)
∑

u∈Ij (t)
ξcu.z (t)

, where ξcj.z(t), z ∈ Ij(t)

and j ∈ {1, ..., Nx}, are the powers of the signals sent by
the nodes to the calculators neighboring them, including their

RSSI online vectors. Interval weights could also be obtained

by adding incertitude to ξcj.z(t). The combination is per-

formed at one of the calculators neighboring the node. The

second scalar estimate could be picked up at the center of box

[x̂j]f (t).

3.3. Estimates combination

Since mobility and fingerprinting boxes include the true loca-

tion of node j at time t, the final position estimate could be
obtained by intersecting these boxes as follows,

[x̂j](t) = [x̂j ]m(t) ∩ [x̂j ]f (t). (12)

The final punctual estimate is given by taking the center of

the estimated box.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x
1
 (m)

x
2
 (

m
)

real trajectory

anchors

ref. positions

estimated trajectory

estimated boxes

Estimated trajectory

Fig. 3. Illustration of the real trajectory of the node with its

estimated one.

4. RESULTS

For illustration, we consider a 2D surveillance area of

100m × 100m, segmented into NZ zones, where anchors

and reference nodes are uniformly deployed. Nodes travel

freely in this region and they are localized independently

from each other. So, for simplicity and without loss of gen-

erality, only one node is considered for localization and all

of the data are simulated. In this section, the nodes are as-

sumed to be rotationally constrained for simplicity, wherever

in case of need, the computations could be easily explored for

the other case. Node trajectory is generated by defining two

acceleration signals, varying over 100s with ∆t = 1s using
the sine function, and then by integrating twice their analytic

expressions. The initial velocities are set to zero and the node

is assumed to be fixed at a known position at the beginning

of the localization. The trajectory is shown in solid line in

Figure 3.

At the very beginning, we set the numbers of anchors and

reference positions respectively to 16 and 100, as shown in

Figure 3. In order to generate the simulated RSSIs, we use

the Okumura-Hata model [3], as follows,

ξ = ξ0 − 10 · nP · log10dist, (13)

where ξ0 = 100dB and nP = 4dB. dist denotes the dis-
tance between positions of anchors and nodes. A Gaussian

white noise is added to the values of accelerations with a stan-

dard deviation σ′γ = 0.008m/s2, which is equivalent to 5%
of the standard deviation of the accelerations. We also add

another gaussian white noise RSSIs values with standard de-

viation σξ = 0.5dB, which corresponds to 5% of the standard

deviation of all RSSIs. The estimation error is the average

distance between the exact positions and the estimated ones,

over 100s. A comparison of the estimation errors is shown

in Table 1 between using only accelerometer with third-order

equation (Accel.), using only fingerprinting in decentralized

scheme where K = 3 (Fing.) and the proposed combined



method in the same conditions with parameter α = 2 (Com-
bined). As expected, combining both information leads to

more accurate results. Moreover, with less zones, the method

is more accurate, since more reference positions are consid-

ered per zone. Indeed, with 100 reference positions, one ob-
tains 25 reference positions per zone with NZ = 4 whereas it
is around 11 for NZ = 9. By increasing the total number of
reference positions to 225, obtaining 25 reference positions

per zone for NZ = 9, the estimation results are more accu-
rate. Note that all the results are obtained by executing the

algorithm 50 times and averaging the results.

Table 1. Estimation errors in meters with Na = 16.

Accel. Fing. Combined

Np = 100 Nz = 4 2.1015 2.2611 1.0677

Nz = 9 2.1015 2.7731 1.7642

Np = 225 Nz = 4 2.1015 1.7432 0.7521

Nz = 9 2.1015 1.8226 0.9325

We compare afterwards our method to an existing RSSI-

based method [10], which proposed a combined K-nearest

Neighbors and Fuzzy inference system to improve the posi-

tioning accuracy based on fingerprinting method. In this part

of simulations, comparison is commanded by testing through

two different deployments of the network. One deployment

is considered over an area of 100m × 100m as shown in

Figure 3 above, while the other one consists of only 4 an-

chors located at four corners and 25 reference positions, in a
5m× 5m area, as proposed in [10]. Nodes trajectory remains

the same. For the former configuration, experimental param-

eters remain the same as that in the preceding part, whereas in

the latter configuration the data are scaled to the area in con-

sideration. Comparison is illustrated as well by estimation

errors in meters among three algorithms: the original method

FKNN from [10], an updated version of the combination of

FKNN and accelerometer data (see section 3.1) and our pro-
posed combined method WKNN+Acc. Results are illustrated

in Table 2. Obviously, our method performs better in various

configurations of the network.

5. CONCLUSION

This paper proposed an original decentralized localization

technique with a third-order mobility model for mobile wire-

less sensor networks. The proposed method resolves the

localization problem using information of accelerometers

coupled to gyroscope, fingerprinting and interval analysis.

The proposed method computes two interval-estimates and

then combines them, leading to position boxes including the

real locations of the nodes. Simulation results show that the

proposed method outperforms not only the single method of

acceleormeter or fingerprinting, but also proves a better per-

formance over another RSSI-based range free method. Future

Table 2. Comparison with Fuzzy Knn method
FKNN FKNN+Acc WKNN+Acc

Configuration 1 2.4926 1.0281 0.7521

Configuration 2 0.4794 0.1700 0.1086

works will handle the localization problem in a more robust

way using real data.
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