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ABSTRACT

The widespread adoption of mobile devices has lead to an
increased interest toward smartphone-based solutions for
supporting visually impaired users. Unfortunately the touch-
based interaction paradigm commonly adopted on most de-
vices is not convenient for these users, motivating the study
of different interaction technologies. In this paper, follow-
ing up on our previous work, we consider a system where
a smartwatch is exploited to provide hands-free interaction
through arm gestures with an assistive application running
on a smartphone. In particular we focus on the task of ef-
fortlessly customizing the gesture recognition system with
new gestures specified by the user. To address this problem
we propose an approach based on a novel transfer metric
learning algorithm, which exploits prior knowledge about
a predefined set of gestures to improve the recognition of
user-defined ones, while requiring only few novel training
samples. The effectiveness of the proposed method is demon-
strated through an extensive experimental evaluation.

Index Terms— Gesture recognition, smartwatch, transfer
learning, Haar features, visual impairments.

1. INTRODUCTION

With their ever increasing computational power, low cost and
widespread adoption, smartphones are arguably ideal targets
for developing applications aimed at assisting disabled users
in carrying out their daily activities. In particular, low-vision
users could greatly benefit from applications that exploit the
smartphone’s camera to guide them and to help them avoid-
ing potential dangers. However, the typical touch-based in-
terfaces adopted on smart devices are not accessible for low-
vision people, and traditional systems based on voice are gen-
erally not reliable enough when used in noisy environments.

Starting from these premises, in our previous work [1]
we proposed a system where a smartphone hanging from the
user’s neck provides an assistive application controlled by
arm gestures captured by a smartwatch. Expanding on this
work, we tackle the problem of system reconfigurability, that
is allowing the user to define his own set of gestures. In gen-
eral, a desirable feature of this kind of system is that of only
requiring the user to input a small number of sample gestures

to reconfigure it. More so, in the case of systems designed
for assistive tasks the customization process has to be as ef-
fortless as possible. Several previous works describe gesture
recognition algorithms having this property [2, 3, 4]. How-
ever, to our knowledge none have considered the possibility
of exploiting prior information to improve the recognition of
user-defined gestures.

In this paper we propose a novel approach to reconfig-
urable gesture recognition based on Supervised Local Dis-
tance Learning. Prior knowledge about a set of predefined
gestures is exploited to improve the recognition of user-
defined gestures through a novel domain adaptation tech-
nique. Only a small number of gesture repetitions is required
from the user to reconfigure the system: with two repetitions
per gesture we obtain an average accuracy of 85% on a set of
six target gestures and the accuracy rises to 93% if three rep-
etitions are available. While the training phase requires some
computations on a remote server (which are only performed
once offline), the recognition can be performed in real time
on a standard smartphone.

2. RELATED WORKS

Several previous works have addressed the topic of making
portable devices more accessible for the visually impaired [5,
6]. Of particular relevance is Freevox 1, a smartwatch-like
device designed with accessibility as a primary requirement.
Differently from our system, the user interacts with Freevox
using voice commands and a simplified touch interface. The
use of smartwatches as gesture-based input devices has been
probably first considered in the work of Bieber et al. [7],
which underlines the fundamental distinction between the two
tasks of gesture recognition and activity recognition. Com-
mon of several publications about smartwatch-based interac-
tion is the adoption of custom or semi-custom devices. Mor-
ganti et al. [8] propose a wrist-worn device capable of detect-
ing hand and finger gestures through flexible force sensors,
while Bonino et al. [9] adapt a commercial device to be used
for domotic applications developing a custom firmware. In
contrast we choose to focus on a low cost device available
off-the-shelf.

1http://myfreevox.com/en/



Gesture recognition from accelerometer data is gen-
erally treated as a classification problem, with different
authors proposing different machine learning approaches
to its solution. In particular, Support Vector Machines
(SVM) [10, 11, 12], Hidden Markov Models (HMMs) [13, 2]
and Bayesian Networks [14] have proven to be well suited
to the task. Methods based on generative approaches like
HMMs are generally limited in their applicability due to their
computational complexity. SVMs on the other side usually
offer lower computational requirements at classification time,
making them preferable for real-time applications on low
power devices. Of particular interest for our work are those
algorithms targeted at recognizing user-defined gestures. Liu
et al. [4] propose a system based on Dynamic Time Warp-
ing that can be trained with a single sample gesture and that
keeps itself updated through template adaptation. Similarly
the system proposed by Mantyjarvi et al. [2] can be trained
with a single gesture and employs noise-distorted copies of
that gesture to train a HMM. To our knowledge however no
previous work exists on exploiting prior knowledge about
a predefined set of gestures to improve the recognition of
user-defined gestures.

Transfer learning [15] has recently gained great impor-
tance due to the increasing need of applications robust to
changes of operating conditions. Transfer learning aims to
improve a classification or regression model trained on few
data (i.e. the target data), by exploiting knowledge from data
of related tasks (source data). In particular, domain adaptation
based on a distance learning framework has been previously
proposed. In [16] a transfer metric learning method is intro-
duced for visual object categorization. However, the same
set of categories are assumed in the known and the novel
domain. In [17] transfer learning with different categories
in source and target data is addressed but, while we provide
a local metric learning framework, they use a completely
different approach based on spectral embedding. In general,
we are not aware of a transfer learning method targeted to
accelerometer-based gesture recognition applications.

3. SYSTEM OVERVIEW

In this work we consider a system composed of two devices: a
smartphone which the visually impaired holds in front of his
breast using a necklace and a wrist-worn smartwatch. The
smartphone runs an application composed of several mod-
ules, each designed to assist the user carrying out a specific
activity. Two of these modules have been described in [1]: a
logo detector and a danger sign detector, while others (e.g. a
vision-based assistant for navigating corridors) are currently
being developed. The smartwatch acts as a remote accelera-
tion sensor, providing a mean of capturing arm gestures. Each
gesture is associated with an action to be performed on the
system, e.g. switching between modules. We want to extend
this system to allow the user to define his own set of person-

Fig. 1. A user interacting with the proposed system. 1) The
gesture recognition is activated by tapping on the smartwatch.
2) The user performs a gesture. 3) The gesture’s end is sig-
naled with a second tap. 4) The system recognizes the gesture.

alized gestures. To this end we propose the transfer learning
algorithm described in Section 4.

As mentioned in Section 1, the computation related to
the gesture reconfiguration procedure is offloaded to a remote
server due to its computational complexity, while the gesture
recognition itself and the remaining application logic is en-
tirely implemented on the smartphone. The two devices used
in our testing are a Google Galaxy Nexus and a Sony Smart-
Watch™. This is a very low-cost smartwatch that can commu-
nicate wirelessly with any Android device trough a Bluetooth
radio. Its integrated 3-axis accelerometer provides measure-
ments at a sampling rate of 10 Hz.

A tap on the touch sensitive screen of the watch is used
to signal the beginning and the end of a gesture. During this
interval the system acquires a sequence of readings from the
accelerometer, composed of one independent signal for each
of the three axes of the sensor. As proposed in [10], we use the
Haar Wavelet Transform to represent the acceleration signal.
The first eight samples of the Haar transform of each channel
are concatenated to form a 24-element vector that constitutes
the input to the classification algorithm described in the next
section. Figure 1 shows an user with the proposed system.

4. LEARNING ALGORITHM

In this section we present our transfer learning method for
gesture recognition. The aim of the proposed approach
is to train a distance metric to effectively classify a user-
defined set of gestures, the target set T , taking advantage
of previous knowledge, i.e. a collection of gestures previ-
ously labeled (the source set S). Since in our application
we allow the user to record its own gestures, the source
and the target set may contain, in general, different classes.
We define S = {(hs
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contains the Haar coefficients computed on the i-th ges-
ture, yi, li ∈ IR are the source and the target labels and
Ns and Nt are respectively the number of source and target
data. As stated above, the source and the target sets may
contain different classes, i.e. yi ∈ Cs = {Cs
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Algorithm 1 Algorithm to solve (1)
Input: The sets T and S, the regularization parameter λ, the num-
ber of iteration T , the threshold θ.

ComputeM(Csi , C
t
j), ∀i, j.

Initialize W = [w1,w2, . . . ,wKt ] = 0.
for t = 1, . . . , T do

Initialize D ∈ IRdKt , D = 0.
c = 0.
for i, j, k = 1, . . . , Nt do
Xijk = dik − dij
if ((1−wT

li
Xijk ≥ 0) ∧ (lk 6= li) ∧ (lj = li))

D[(li − 1)d+ 1 : lid] = D[(li − 1)d+ 1 : lid] +Xijk

c = c+ 1.
endif

endfor
for q = 1, . . . , Ns do

Compute p = argminz∈CtM(yq, z)
for n,m = 1, . . . , Ns do
Xqnm = dqn − dqm
if ((1−wT

pXqnm ≥ 0) ∧ (yn 6= yq) ∧ (ym = yq))
Compute r = argmina∈Ct,p6=aM(yn, a), yn 6= yq
if (M(yq, p) ≤ θ ∧M(yn, r) ≤ θ)
D[(p− 1)d+ 1 : pd] = D[(p− 1)d+ 1 : pd] +Xqnm

c = c+ 1.
endif

endif
endfor

endfor
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endfor
Output: W

li ∈ Ct = {Ct
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t
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}. Note that our framework can also

handle the situation where Ct ∩ Ct = ∅. In our scenario we
allow a very short configuration phase where the user records
2-3 repetitions for each novel gesture class. It is clear that,
having at disposal only very few training samples in the tar-
get set, it is very challenging to learn an effective recognition
model. If one could take advantage of past knowledge, then a
performance improvement could be achieved.

It is reasonable to suppose that not all the source data
can be exploited in the target domain: we need to understand
what information to transfer and what to discard. In our sce-
nario this is achieved by evaluating the similarity between the
source and the target classes. For this task we propose to use
the Maximum Mean Discrepancy (MMD) [18] to compute the
divergence between two classes Cs

i and Ct
j as follows:

M2(Csi , C
t
j) =

1

ms2
i

‖KCs
i
‖1 −

2

ms
im

t
j

‖KCs
i C

t
j
‖1 +

1

mt2
j

‖KCt
j
‖1

where K is the kernel matrix (in this paper we simply con-
sider a linear kernel) and ms

i and mt
j are the number of sam-
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Fig. 2. A visual representation of our constraint selection strat-
egy. A,B,C: source classes. 1,2,3: target classes. The con-
straints between A and C are preserved since A and C are
similar to 1 and 3, those between A and B and between B and
C are discarded as B is not similar to any of the target classes.

ples of classes Cs
i and Ct

j .
In our approach we first compute M(Cs

i , C
t
j) of every

pair of source and target classes and then we learn a distance
function to be used to classify novel gestures according to a
Nearest Neighbor (NN) scheme. More specifically, we pro-
pose to learn a set of Kt distance functions δc(hi,hj) =
wT

c d(hi,hj) = wT
c dij =

∑
n w

n
c (h

n
i − hnj )2, one for each

target class. We learn them introducing the following opti-
mization problem:

min
λ

2
||W||2 + 1
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∑
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∑
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s.t. wT
li(dik − dij) ≥ 1− ξijk ∀i, j, k li = lj ,li 6= lk

wT
p (dqn − dqm) ≥ 1− ξqmn ∀q,m, n yq = ym,yq 6= yn

W, ξijk, ξqmn ≥ 0

where W = [w1, . . . ,wKt ] and γqmn is defined as follows:

γqmn =


1 if minz∈CtM(yq, z) ≤ θ ∧

mina∈Ct,z 6=aM(yn, a) ≤ θ
0 otherwise

(2)

The constraints in (1) impose that gestures of the same class
should be close, while gestures of different categories should
be separated by a margin of 1.

A weight vector W that solves (1) must satisfy two sets of
constraints: one pertaining to the target data, the other to the
source data. The first set contains every possible constraint
we can construct on the target data, while for the second only
a subset of the source classes is considered. In a nutshell, we
only consider a source class if it is similar to a target class in
the MMD sense. The parameter θ in (2) controls the amount
of information that is transferred from the source by impos-
ing a threshold: if the MMD between two classes is lower
than θ then they are considered similar. The intuition behind
the proposed approach is illustrated in Fig. 2. To solve the op-
timization problem in (1) we use an online learning method
[19] which adopts an efficient iterative algorithm based on a
stochastic gradient descent approach. The resulting algorithm
is reported in Algorithm 1. Once the optimal distance vector
W is learned, a novel test sample h is classified computing
the argminli w

T
li
d(h,hi) where (hi, li) ∈ T .



(a) nearest, avg: 83.33% (b) no-transfer, avg: 81.25% (c) transfer, avg: 91.67%

Fig. 3. Confusion matrices for the three classifiers when applied to gestures 1 to 6 as performed by user 3. The classifiers are
trained using two samples per gesture and tested on the others.

Gestures Tr. Users N NT T

1-6
3 84.44% 86.67% 91.11%
2 79.17% 81.67% 86.67%

7-11
3 90.67% 97.33% 97.50%
2 89.00% 98.50% 99.50%

Table 1. Classification accuracies obtained when classifiers
are trained with data from a subset of users and tested on the
rest.

5. RESULTS

We evaluate the performance of the proposed algorithm on
the set of 19 gestures shown in Figure 5. This set is split into
two subsets: the source gestures, denoted with letters, and
the target gestures, denoted with numbers. We recorded 15
users performing 15 repetitions of each gesture in the source
set, for a total of 1800 samples, and 6 other users perform-
ing 10 repetitions of each gesture in the target dataset, for a
total of 660 samples. The proposed algorithm, denoted as
transfer (T), is compared against two baselines: a simple
nearest neighbor algorithm using the euclidean distance, de-
noted as nearest (N), and a local metric learning algorithm
which only uses target data, denoted as no-transfer (NT).

In a first set of experiments we compare the three clas-
sifiers in a user independent setup, i.e. using a subset of the
users for training and the rest for testing. Specifically we con-
sider the whole source data and we perform two experiments
defining two target sets, one composed of gestures 1-6, the
other of gestures 7-11. Table 1 shows the results obtained by
selecting data corresponding to two or three users from the
target dataset. It is clear that learning a local metric leads
to a performance boost: for gestures 1-6 no-transfer
achieves an accuracy of 86,67% and 81,67%, respectively
using 3 and 2 users, against the 84,44% and 79,17% of
nearest, while for gestures 7-11 an improvement of 7-8%
is observed. Moreover, transferring knowledge from source
data provides additional benefits. When the new classes are
similar to the source ones, e.g. for gestures 1-6, the advantage
of using transfer is more pronounced, while for gestures
7-11, which are quite dissimilar from the source, our ap-
proach correctly discards the majority of source information

2 3 4
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Fig. 4. Classification accuracies on gestures 1-6. Each user is
considered independently and the averages are shown.

to avoid negative transfer.
In the last series of experiments we focus on the scenario

of interest: allowing the user to reconfigure the system using
few samples of novel gestures. Thus we compare the three
approaches when only 2-4 samples per class are available in
the target set. Results are shown in Fig. 4. It is clear that when
the training set is small for the target domain, we can take ad-
vantage of the knowledge of the source, adapting it in the new
context. Our approach is the only one that guarantees an accu-
racy greater than 80%. Obviously the performances increase
as the training set size grows. Figure 3, shows the confusion
matrices associated to a specific user. It is interesting to note
how the accuracy of no-transfer is lower that the one ob-
tained with the nearest neighbor approach, while transfer
outperforms both thanks to the use of source data.

6. CONCLUSIONS

A smartwatch-based gesture recognition system that can be
personalized by the user using a small set of samples has
been presented. The system relies on a novel transfer met-
ric learning algorithm to improve our previously proposed as-
sistive application for the visually impaired by providing an
effortless reconfiguration procedure. This algorithm has been
proven to achieve good accuracy on a set of target gestures ex-
ploiting prior knowledge about another set of source gestures.
Future work will be directed towards improving the gesture
recognition system by allowing continuous system improve-
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Fig. 5. The two sets of considered gestures. The source set is
denoted with letters, the target set with numbers.

ment using unlabeled gestures, and towards developing ad-
ditional system components e.g. a multimodal visual-inertial
localization module [20, 21].
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