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ABSTRACT
Latest smartphones often have more than one microphone
in order to perform noise reduction. Although research on
speech enhancement is already exploiting this new feature,
robust speech recognition is not still benefiting from it. In
this paper we propose two feature enhancement methods es-
pecially developed for the case of a smartphone with a dual-
microphone operating in an adverse acoustic environment. In
order to test these proposals, we have already developed a
new experimental framework which includes a noisy speech
database (based on AURORA2) which emulates the acquisi-
tion of dual-microphone data. Our experimental results show
a clear improvement in terms of word accuracy in compar-
ison with both using a power level difference-based speech
enhancement algorithm and a single channel feature compen-
sation approach.

Index Terms— Dual-microphone, Robust speech recog-
nition, Feature enhancement, Smartphone, AURORA2-2C

1. INTRODUCTION

Over the last years, mobile devices such as smartphones have
experienced an important growth in terms of sales and ca-
pabilities. Speech recognition technology has taken advan-
tage of the latter, carrying to even more extended function-
alities such as information search, dictation or call center in-
teraction. We can use this kind of applications anytime, any-
where, usually taking place in noisy acoustic environments.
For this reason it is crucial to tackle with the noise that con-
taminates the speech in order to ensure a good recognition
performance [1].

Latest mobile devices include more than one microphone
to perform noise reduction. This feature is employed for
speech enhancement tasks, but it is not being exploited for
robust speech recognition. For instance, the speech enhance-
ment algorithms described in [2–4] are intended to work in a
dual-microphone configuration. All of them are based on the
power level difference (PLD) between the two microphones
of the device. The PLD approach establishes that, in a conver-
sational position (i.e. phone loudspeaker placed at the ear),
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the target speech power is greater at the primary microphone
than at the secondary one (which is usually located at the
rear or upper part of the device), while, assuming far field
noise, the received noise signal powers are approximately
the same at both microphones. Other papers such as [5, 6]
propose speech enhancers destined to work on smartphones
in a hands-free position.

In this work we present a pair of novel feature enhance-
ment techniques intended to take advantage of the dual-
microphone feature for robust speech recognition. The main
idea behind these algorithms is to estimate the clean speech
power spectrum in the first channel (related to the primary
microphone of the device) by using the information contained
in both channels. These methods are evaluated in accordance
with a conversational position in two different ways: as stan-
dalone techniques and as preprocessing techniques. In this
last case, the enhanced features are fed into a vector Taylor se-
ries (VTS) [7] feature compensation stage in order to further
improve the recognizer performance by removing the remain-
ing residual noise after the first enhancement. Our methods
are compared with VTS along with a PLD-based speech en-
hancement technique in order to show the effectiveness of our
proposals in terms of word accuracy.

All experiments have been carried out by using a dual-mic
noisy speech database, that will be referred to as AURORA2-
2C (AURORA2 - 2 Channels - Conversational Position),
which is based on the well-known AURORA2 [8]. AURORA2-
2C tries to emulate the noisy speech database that could have
been acquired with a dual-microphone smartphone.

The rest of the paper is organized as follows: in Section 2
the dual-microphone configuration and the two proposed fea-
ture enhancement techniques are presented. In 3 the genera-
tion of the AURORA2-2C database is described. Experiments
and a discussion of the results are shown in Section 4. Finally,
conclusions are summarized in Section 5.

2. PROPOSED METHODS

Hereinafter we consider a noisy speech signal yi(m) which
can be expressed as the sum of a clean speech signal xi(m)
and a noise ni(m), i.e. yi(m) = xi(m) + ni(m), where



i = 1, 2 indicates the microphone that captures the signal
(the primary one at the bottom of the device and the one at
the rear, respectively). Assuming that speech and noise are
independent, this additive model can be expressed in terms of
power spectra as,

|Y1(k, t)|2 = |X1(k, t)|2 + |N1(k, t)|2; (1)

|Y2(k, t)|2 = |X2(k, t)|2 + |N2(k, t)|2, (2)

where k and t denote the frequency bin and time frame num-
ber, respectively (k = 0, ...,M− 1; t = 0, ..., T − 1).

In the following subsections we will develop a pair of fea-
ture enhancement techniques for the estimation of |X1(k, t)|2
from noise statistics.

2.1. Minimum mean square noise (MMSN) feature en-
hancer

This first algorithm is based on the minimum variance distor-
tionless response (MVDR) beamformer [9]. According to it,
the proposed linear estimator of the clean speech power spec-
trum bin k at time t in the first channel can be expressed as,

|X̂1(k, t)|2 = wT
kY(k, t) = wT

k

(
|Y1(k, t)|2
|Y2(k, t)|2

)
, (3)

where wk is a 2× 1 weighting vector that must be estimated
from the dual signal. We assume that the speech power in the
second channel is related with the speech power in the first
one through a time-invariant factor A21(k), i.e. |X2(k, t)|2 =
A21(k)|X1(k, t)|2. This factor can be interpreted as the target
speech signal transfer function between the two microphones.
This time-independent approach for A21(k) is appropriate if
we assume a fixed relative position between the speaker and
the smartphone. This seems a reasonable assumption for the
case of adopting a conversational position. In this way, (2)
can be rewritten as,

|Y2(k, t)|2 = A21(k)|X1(k, t)|2 + |N2(k, t)|2. (4)

In accordance with (4), the estimator in (3) can be now ex-
pressed as,

|X̂1(k, t)|2 = wT
k |X1(k, t)|2

(
1

A21(k)

)
+

+wT
k

(
|N1(k, t)|2
|N2(k, t)|2

)
.

(5)

Our goal now is to obtain the weighting vector that minimizes
the mean square noise-dependent term in (5), that is,

wk = argmin
wk

E
[(
wT

kNk(t)
)2]

, (6)

where Nk(t) =
(
|N1(k, t)|2, |N2(k, t)|2

)T
. Rearranging

terms, (6) is now rewritten as,

wk = argminwk
wT

k E
[
Nk(t)Nk(t)

T
]
wk

= argminwk
wT

kCN,kwk.
(7)

CN,k is the following 2× 2 correlation matrix:

CN,k =

(
cN,k(1, 1) cN,k(1, 2)
cN,k(2, 1) cN,k(2, 2)

)
, (8)

where cN,k(i, j) = E
[
|Ni(k, t)|2|Nj(k, t)|2

]
. The mini-

mization in (7) must be subjected to the distortionless speech
constraint

wT
k

(
1

A21(k)

)
= 1, (9)

therefore, the optimization problem can be solved by La-
grange multipliers using the cost function f(wk, λ) =
wT

kCN,kwk − λ
(
wT

k (1, A21(k))
T − 1

)
. We can obtain

the optimal weighting vector by solving∇f(wk, λ) = 0 as,

wk =
C−1N,k (1, A21(k))

T

(1, A21(k))C
−1
N,k (1, A21(k))

T
. (10)

2.2. Dual-channel spectral subtraction

Along with the relationship defined in (4) we can also relate
the noise power spectra in the first and second channels as
|N1(k, t)|2 = G12(k, t)|N2(k, t)|2. In such a case, (1) can be
rewritten as,

|Y1(k, t)|2 = |X1(k, t)|2 +G12(k, t)|N2(k, t)|2. (11)

Similarly toA21(k), factorG12(k, t) can be understood as the
frequency response of a new linear filter that relates the noise
signals captured by the two microphones. Although this filter
will be time-variant according to the scenario geometry (e.g.
the relative position between the moving noise sources and
the smartphone), we will assume that the noise sources do
not meaningfully move during the speech utterance, which
involves time invariance, that is, G12(k, t) ≈ G12(k). Notice
that the magnitude of G12(k) in far field noise conditions,
according to the explanation in Section 1, is around the unity.

Combining equations (11) and (4) we obtain the following
dual-channel spectral subtraction (DCSS) estimator for bin k
at time t:

|X̂1(k, t)|2 =
|Y1(k, t)|2 −G12(k)|Y2(k, t)|2

1−G12(k)A21(k)
. (12)

For every frequency bin we can estimate the noise gain factor
G12(k) by minimizing the mean square error

Ek = E
[(
|N1(k, t)|2 −G12(k)|N2(k, t)|2

)2]
. (13)

Solving ∂Ek/∂G12(k) = 0, we can derive the desired esti-
mate as,

Ĝ12(k) =
ĉN,k(1, 2)

ĉN,k(2, 2)
. (14)



2.3. Implementation issues

In practice, the correlation matrix CN,k is estimated for every
k by using theM first and last frames of each utterance, since
it is considered that those frames are only noise.

Factor A21(k) was pre-estimated for every frequency bin
from stereo clean speech power spectra as the median of a set
of ratios {|X2(k, t)|2/|X1(k, t)|2} obtained from a validation
dataset different from the one described in the next section.
The median operator is applied in order to avoid the influence
of outliers.

The reliability of the estimatedG12(k) in (14) is critically
reduced at very high signal-to-noise ratios (SNRs). In order
to avoid this fact, an a posteriori SNR of the primary chan-
nel is calculated for the utterance being processed: the noise
power is computed from the first and last 100ms while the
noisy speech power is obtained from the rest of the utterance.
Thus, if the SNR exceeds 30dB, G12(k) is set to zero, which
involves that |X̂1(k, t)|2 = |Y1(k, t)|2.

Finally, the estimates obtained in (3) and (12) are bounded
in order to avoid possible negative power spectrum bins:

|X̃1(k, t)|2 = max(|X̂1(k, t)|2, γ|Y1(k, t)|2), (15)

where γ � 1 is a thresholding factor fixed by means of pre-
liminary experiments.

3. THE AURORA2-2C DATABASE

Since a noisy speech database suitable to operate within the
framework of this paper is not available, we have created
the AURORA2-2C (AURORA2 - 2 Channels - Conversa-
tional Position) database for that purpose, which is based
on the well-known AURORA2 [8]. Figure 1 depicts the
block diagram of the scheme applied to generate the pro-
posed database. The clean speech captured by the primary
microphone, x1(m), is received at the secondary microphone
transformed according to the acoustic path h21(m) between
both mics. Thus, x2(m) = h21(m) ∗ x1(m). Original (real)
stereo noise {n′i(m); i = 1, 2} is scaled by the same gain fac-
tor G in order to get a specific SNR for y1(m). Additionally,
a noise ε2(m) is artificially added to model the silence (an
almost negligible signal component) at the second channel.
This is necessary since the original silence component in
x1(m) is almost deleted by the acoustic path h21(m).

We assume that h21(m) takes into account the geome-
try of the problem (i.e. the fixed relative position between
the speaker and the smartphone) but not the acoustic envi-
ronment. This simplification is mostly needed for the next
reason: the acoustics at a given environment are based on
the distribution of different physical elements in space, there-
fore, for a perfect channel modeling it would be necessary
to capture stereo clean speech into the corresponding noisy
acoustic environment, which is physically impossible. Fur-
thermore, notice that AURORA2 does not contemplate the ef-

Fig. 1. The AURORA2-2C generation block diagram.

fect of the different noisy acoustic environments for the clean
speech signals either.

The clean speech signals included in AURORA2 are
used here as the x1(m) signals. In order to get x2(m)
from x1(m), the channel response h21(m) was modeled
as a time-invariant FIR filter trained from speech recorded
in a semi-anechoic environment. Stereo clean speech signals
x
(tr)
1 (m) and x(tr)2 (m) were recorded for that purpose, in a

conversational position, with a Sony Ericsson Xperia neo V
(whose geometry is illustrated in Figure 2). We estimated our
FIR filter through the minimization of the mean square error
E[e2(m)], where

e(m) = x
(tr)
2 (m)−

p−1∑
l=0

ĥ21(l)x
(tr)
1 (m− l). (16)

The stereo noise signals n′1(m) and n′2(m) were recorded
with the same device as for the speech, again in a conversa-
tional position, in some places where the use of a smartphone
is probable: bus, babble, car, pedestrian street, cafe, street,
bus station and train station. By using the application FaNT
(Filtering and Noise Adding Tool) [10], the noise gain factor
G was calculated as defined in [8]. Moreover, noise ε2(m)
was generated so that the resulting silence noise at the sec-
ond channel has the same statistical distribution as the silence
noise present in the first channel.

During training, the AURORA2 clean training set is used
with no modification. For testing, two new sets are defined.
We start from the 4 test subsets of AURORA2 with 1001 ut-
terances in each one. Signals of each noise type are added
to each subset at SNRs of 20dB, 15dB, 10dB, 5dB, 0dB and
-5dB. The clean case is taken as a seventh condition too. As
in [8], noise and speech are filtered with the G.712 charac-
teristic before signal addition. In this way, we assume that
speech and noise signals have been recorded with a similar
equipment. Noises bus, babble, car and pedestrian street,
are added to the 4 subsets in order to generate the first test



Fig. 2. Geometry of the device used for AURORA2-2C.

set, called test set A, which is composed of 28028 utterances
(1001 utterances per subset × 4 subsets × 7 SNRs). The sec-
ond test set (test set B) is defined similarly but using noises
cafe, street, bus station and train station.

4. EXPERIMENTAL RESULTS

4.1. Experimental framework

The European Telecommunication Standards Institute front-
end (ETSI FE, ES 201 108) is used to extract acoustic
features from the speech signal. For feature enhancement,
129-component power spectral feature vectors are employed.
Twelve Mel-frequency cepstral coefficients (MFCCs) along
with the 0th order coefficient and their respective velocity
and acceleration form the 39 dimensional feature vector used
by the recognizer. Cepstral mean normalization (CMN) is
applied to improve the robustness of the system to channel
mismatches. For the recognizer, acoustic models trained only
on clean speech are employed. Left to right continuous den-
sity hidden Markov models (HMMs) with 16 states and 3
Gaussians per state are used to model each digit. Silences
and short pauses are modeled by HMMs with 3 and 1 states,
respectively, and 6 Gaussians per state.

Different techniques are compared in terms of word
recognition accuracy when they are evaluated using the
AURORA2-2C database. All methods were tested both as
standalone techniques and in combination with a 1st order
vector Taylor series feature compensation algorithm (VTS-
1). The VTS implementation was the one reported in [11],
except that noise estimates are obtained by linear interpola-
tion between the averages of the first and last 20 frames. VTS
compensation is performed using a 256-component Gaussian
mixture model (GMM) with diagonal covariance matrices.
GMM training is performed by the expectation-maximization
(EM) algorithm on the same dataset used for acoustic model
training. A standalone VTS-1 was also evaluated as refer-
ence, while the baseline consists of the results obtained when
the noisy speech features are employed. For both cases, the
signals from the first channel, y1(m), were used.

Our proposals were compared with the speech enhance-
ment technique in [2] (PLD). The final smoothing stage of
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this PLD-based algorithm was avoided since a small degrada-
tion of the recognizer performance was experimentally found.

Thresholding factor γ = 0.05 was determined by recog-
nition experiments on an independent validation set. Finally,
M = 20 was chosen.

4.2. Results

Word accuracy results for different SNR values, and averaged
along all types of noise in test sets A and B, are shown in Table
1. A comparative graph can be seen in Figure 3. We observe
that both of our proposed techniques (DCSS and MMSN)
provide a similar performance: as standalone methods they
produce an increase of the recognizer accuracy in compar-
ison with the baseline case, being the best results obtained
when these techniques are used as preprocessing algorithms
for VTS-1. It can be shown that the expressions of MMSN
tend to those of DCSS (and vice versa) when A21(k) →
0. For conversational position A21(k) factor has a relatively
small magnitude, what justifies the similar performance of
DCSS and MMSN. On the other hand, as can be observed,
the evaluated speech enhancement method (PLD) is not ad-
equate for speech recognition purposes. Although this kind



Method / SNR (dB) -5 0 5 10 15 20 Clean Avg. (-5 to 20)
Baseline 17.57 32.55 57.16 83.51 94.74 97.71 99.10 63.87
PLD 15.74 27.12 46.38 67.35 81.10 88.39 99.09 54.35
MMSN 23.58 47.04 73.58 89.77 95.56 97.45 98.64 71.16
DCSS 23.70 47.34 73.52 89.69 95.27 97.06 99.08 71.10
VTS-1 44.94 73.44 89.27 95.97 97.93 98.52 99.06 83.35
PLD+VTS-1 30.70 50.75 73.47 87.85 94.93 97.25 99.07 72.49
MMSN+VTS-1 55.83 80.23 91.85 96.72 98.15 98.61 98.94 86.90
DCSS+VTS-1 56.64 80.60 91.95 96.68 98.10 98.56 99.09 87.09

Table 1. Word accuracy (in terms of percentage and for different SNR values) obtained for the evaluated techniques. Results
are averaged along all types of noise in test sets A and B.

of techniques improve the speech quality, they may not be
appropriate for the recognition task. This idea has been re-
ported in the literature, for instance in [12], where it has been
experimentally demonstrated that some speech enhancement
methods even produce degradation in terms of word accu-
racy. Figure 4 shows the noise attenuation minus speech at-
tenuation (NA-SA) measure, used in [2] and defined in [13],
for the different techniques evaluated. The bigger this mea-
sure, the better the objective speech quality. According to the
comparison, as expected, the PLD-based algorithm is a good
speech enhancer with respect to our proposals. This fact was
confirmed through informal subjective listening opinions. In
this way, the need for developing specific dual-channel fea-
ture enhancement methods for speech recognition is clearly
supported.

5. CONCLUSIONS

In this paper we have proposed two feature enhancement tech-
niques and a novel methodology for generating a noisy speech
database for robust speech recognition on smartphones with
dual-microphone. Our results have shown the utility of tak-
ing advantage of the signal captured by the extra microphone
dedicated to noise reduction. Additionally, the AURORA2-
2C database could serve for other evaluations in the future.
As future work, dynamic and better parameter estimation for
our methods will be investigated. Also, we aim to extend and
evaluate these techniques in hands-free conditions.
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