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ABSTRACT
Compressive sensing exploits the structure of signals to
acquire them with fewer measurements than required by the
Nyquist-Shannon theory. However, the design of practical
compressive sensing hardware raises several issues. First,
one has to elicit a measurement mechanism that exhibits
adequate incoherence properties. Second, the system should
be robust to noise, whether it be measurement noise, or
calibration noise, i.e. discrepancies between theoretical and
actual measurement matrices. Third, to improve performance
in the case of strong noise, it is not clear whether one should
increase the number of sensors, or rather take several mea-
surements, thus settling in the multiple measurement vector
scenario (MMV). Here, we first show how measurement
matrices may be estimated by calibration instead of being
assumed perfectly known, and second that if the noise level
reaches a few percents of the signal level, MMV is the only
way to sample sparse signals at sub-Nyquist sampling rates.

Index Terms—compressive sensing, calibration, MMV, exper-
imental study, optical imaging, scattering media

I. INTRODUCTION

In their groundbreaking studies [4], [8], [3], CANDÈS,
DONOHO, TAO and ROMBERG demonstrated that the spar-
sity of a signal [10] can be exploited so as to dramatically
reduce the number of sensors and measurements required
for its acquisition, without loss of quality as compared to
traditional Shannon-Nyquist sampling. Compressed sensing,
or compressive sensing, CS in short, is a field of research
that bloomed since then (see [12] for a recent review).

However, there are still only few actual sensing devices
that implement CS in hardware. The design of such devices
must take into account a number of important aspects.
The most documented one is the choice and design of the
sampling mechanism, i.e. the choice of a good measurement
matrix. Several specific technical conditions were proposed
such as the restricted isometry [2] that are sufficient to
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guarantee good performance. Unfortunately they are also
difficult to translate into practical design guidelines. In this
respect, the most interesting argument featured very early
on in [4], [8], [3] is that a randomized sensing mechanism
yields perfect reconstruction with high probability. In the
past few years, several hardware implementations capable of
performing such random compressive sampling were intro-
duced [9], [6], [20], [28], that emulate random measurements
through the use of multiplexing devices such as arrays
of digital micromirrors (abbreviated DMD). More recently,
some studies focused on compressive hardware imagers that
replace such multiplexers by the natural disorder occurring
in complex materials [23], [13], [19], [22].

Beyond the choice of the sensing mechanism, other prac-
tical concerns have to be addressed to build a CS hardware.
First, the sampling mechanism may be unknown [22] or not
perfectly controlled and may thus require calibration [16],
[1]. The second practical question when building a CS
imager is the choice of the number M of sensors and of the
number P of measurements to take for the reconstruction
of one single object. It has indeed been shown that using
Multiple Measurement Vectors (MMV, P > 1) yields better
performance than a Single Measurement Vector (SMV) in
the noisy case [7], [12].

Our aim in this work is to provide guidelines concerning
the choice of the number M of sensors and the number P of
measurements to use in the presence of noise, both when the
measurement matrix is perfectly known or experimentally
measured. If many results were already obtained concerning
the design of sparse reconstruction algorithms that are robust
to noise (see [10], [12] for a review and, e.g. [21] for some
recent trends), few empirical results have yet been given that
may easily translate into design guidelines concerning the
choice of MMV over SMV. Here, we show experimentally
that, depending on the amount of noise in the observations,
taking several measurements (P > 1) may be the only way
to reach a working regime in practice, which has already
been noticed, e.g. in [5]. However, since increasing P also
dramatically increases the number of samples, a practitioner
may want to choose the smallest acceptable P for a particular
level of noise. Here, we go further in the investigation
by providing a thorough simulation study that compares



performance of many (M,P ) configurations with varying
levels of noise. Making use of the multiple scattering imager
recently presented in [22], we experimental demonstrate
that choosing MMV instead of SMV may be much more
important than perfectly knowing the measurement matrix
in the design of a CS hardware that actually reaches sub-
Nyquist sampling rates.

II. SMV WITH NOISE
Assume that the signal we want to acquire is a vec-

tor x ∈ RN . The measurements are given as a vector y ∈
RM , given by y = Hx, where the M × N matrix H
is called the measurement matrix (MM), with M < N .
If x is known to be sparse, i.e. with only a few nonzero
coefficients, it can be recovered through sparsity promoting
solving algorithms that are able to recover a K−sparse
x with N ∼ O (K logN/K) measurements, under some
requirements over the MM (see [10], [12] for a review). If
the signal x is not sparse, it is often assumed sparse in some
given basis B, so that x = Bs, where s is sparse. In that
case, estimation is performed by solving for s with HB as
a MM.

II-A. Calibration: measuring the measurement matrix
When the MM is not perfectly known, several studies have

focused on calibration, that permits to estimate it [16], [1]
during a preliminary stage where both x and y are known.

When the sensing mechanism involves some complex
physical diffusion as is the case in multiple scattering [27],
[24], the MM may be totally unknown, even if it may be
assumed deterministic. In that case, previous studies in optics
concentrated on the estimation of that matrix [24], [25].

Here, we generalize those methods and assume that during
a calibration stage, we can control the input x and measure
the corresponding output y. Doing this L times and stacking
the inputs and the outputs into matrices X and Y respec-
tively, we have Y = HX . Assume these measurements come
with additive white Gaussian noise of variance σ2, H is
estimated as:

Ĥ = Y XH
(
XXH + σ2I

)−1
, (1)

where I is the N ×N identity matrix. A thorough Bayesian
treatment can take correlated measurement into account, as
well as a prior distribution over H [21]. The a posteriori vari-
ance of H can be exploited as the power of a multiplicative
noise [18].

II-B. Experimental phase transitions under noise
All CS reconstruction algorithms exhibit some level of ro-

bustness to noise. However, when noise becomes prominent,
performance of CS eventually drops. In figure 1, we show
how the performance of SMV drops when the amplitude
of noise reaches about 3% of the amplitude of y. These
figures give the 50% phase transition between success (below

each curve) and failure (above). Success is understood as
a good recovery of more than 90% of the support of x.
The algorithm considered is the standard OMP algorithm.
Remarkably, CS with SMV behaves the same when the MM
is perfectly known or estimated through (1) with L = 6N
calibration measurements.
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Fig. 1. Experimental 50% phase transitions of OMP-SMV
with a) True MM and b) Estimated MM, at different levels
of noise. Performance drop at 3% of noise. The (M,N) con-
figurations below (above) each curve correspond to success
(failure), respectively.

When noise is present at level above a few percents, which
occurs in a number of practical scenarios, reconstruction
using SMV-CS becomes impossible.

III. MMV WITH NOISE
Suppose that we can take P different measurements of our

signal. The observations are given as a M × P matrix Y =
HX , where X is the unknown N ×P signal. Each column
of X corresponds to a different “version” of the input. We
assume that they all share the same support, with different
nonzero values, which can be achieved in optics through
different phase illuminations of the same object [22], [5].

Many algorithms are available today to estimate the sup-
port of X in the case of MMV [7], including the classical
multichannel OMP [17].
III-A. Experimental phase transitions under noise

In figure 2, we give the 50% phase transitions observed
using MMV with different numbers P of observations and
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Fig. 2. Experimental performance of MMV with estimated
MM. Each shaded area comprises all the 50% phase tran-
sitions for noise levels ranging from 0% to 10%. MMV is
seen to be much robust to the presence of noise.

noise levels from 0% to 10% of the average amplitude of Y .
For each P , the shaded area on the figure includes all 50%
phase-transitions between these two noise levels. Due to
space constraints, we only give the results for CS using a
MM that is estimated through (1). Results using the true
MM are similar.

Figure 2 demonstrates that MMV significantly improves
robustness to noise. Its 50% phase transition is seen to
be almost the same for noiseless observations or when the
noise reaches 10% of the amplitude of Y . These simulations
confirm the theoretical results given in [11] and the empirical
findings in [22], [5] on that matter.

III-B. MMV sub-Nyquist CS under noise
When MMV is chosen, each one of the M sensors

performs P measurements, yielding MP samples. When the
objective is compression, i.e. storing x with only MP < N
samples, one may wonder whether increasing P may be
interesting over the classical SMV case.

In figure 3, we give the results of a comparative study of
MMV and SMV with respect to the sampling rate MP/N .
As expected, SMV is best in the noiseless case. However,
as soon as the noise level reaches a few percents, only
MMV permits to reach sub-Nyquist sampling. In figure 4,
we display the maximal sparsity K/N allowed for good
reconstruction as a function of the noise level when the
sampling rate MP/N = 0.6 is fixed. When the noise level
reaches 4% here, having P > 1 is necessary.

Notwithstanding those results, we highlight that the main
issue in the design of an imager may lie in the crafting
of each one of its sensors, rather than in storage capacity.
Hence, if the choice of MMV with a large P leads to
a number MP of samples possibly higher than N , it
produces good reconstruction with only a few sensors. In
figure 5, we fix the sensor density M/N and display the
smallest P required for good reconstruction as a function of
the sparsity K/N and noise level.
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Fig. 3. Experimental 50% phase transitions of MMV for
(a) 2% noise and b) 5% noise, with different P .
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Fig. 4. Best observed performance for a fixed sampling
rate MP/N = 0.6.
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Fig. 5. Smallest achieving P for successful reconstruction
with a fixed sampling rate M/N = 0.3 as a function of the
noise level and the sparsity K/N .
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Fig. 6. Performance of CS reconstruction of sparse inputs imaged experimentally through our optical setup. Due to the
presence of strong noise, only MMV at P = 3 permits reconstruction with high probability.

original, K=42 M=50, succes=19% M=100, success=57% M=150, success=86% M=200, success=98% M=300, success=100%

Fig. 7. Reconstruction of a sparse input with a real hardware compressive sampler using scattering material and P = 3. Red
squares indicate the pixels identified as active, the original image is shown in the background.

IV. APPLICATION TO OPTICAL IMAGING WITH
SCATTERING MEDIA

IV-A. Background

The diffusion of light through highly complex material
has been the topic of much research in the recent optical lit-
erature [27], [26]. Light entering a highly scattering material
undergoes many scattering events at a nanoscopic level [15],
which were recently shown to be amenable to a macroscopic
linear modelling y = Hx, where H is called a transmission
matrix [24], [25]. In short, if a thin layer of white paint is
placed between the object and the sensors, the transmission
matrix H is random [14] and was recently shown to be a very
good candidate for CS [22]. Whereas recent experimental
studies [22], [5] consider MMV reconstruction for CS, they
do not provide evidence that doing so is mandatory to
reach good performance. We here provide an experimental
validation of the superiority of MMV over SMV in the
presence of strong noise using a new optical imaging system.

IV-B. Results

We refer the interested reader to [22] for details on the
scattering optical imager. We tested for the MMV reconstruc-
tion performance of the system with different numbers P of
measurements. The results are given in figure 6 as a complete
exploration of the proportion of good reconstruction over
all (K,M) configurations. As can be seen, due to the

presence of noise, SMV does not permit good reconstruction,
whereas P = 2 and P = 3 show better performance. An
example of actual reconstruction with K = 42, P = 3 and
a varying number M of sensors is given in figure 7.

V. CONCLUSION

In this paper, we have recalled some important challenges
for the design of hardware implementing compressed sensing
ideas. Independently of the reconstruction algorithm consid-
ered, one has to elicit the measurement matrix, which may
need to be experimentally measured, and one needs to choose
the number of sensors to embed in the imager, as well as
the number of measurements to take for one single object.

We have provided a simple way to measure the measure-
ment matrix, and shown both by a thorough simulation and a
real-world optical experiment that whenever noise is present,
exploiting several measurements of the same object under
different illuminations may give far better results than an
increase in the number of sensors or a better calibration.
Since the crafting of each sensor may be a delicate matter by
itself and calibration a long process, this result has important
consequences in practice.
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