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ABSTRACT

In this paper a lower-bound for estimation of inter-sensor
propagation delay using sources of opportunity is presented.
This approach is referred to as passive identification. It relies
on Ward identity, which is extended to the case of non white
sources. Performances are studied in the case of an homo-
geneous non dispersive linear and time invariant wave propa-
gation medium, under the assumption that many independent
sources impige on the sensor array.

Index Terms— Passive sensor network autolocalization,
variance lower bound, Ward identity.

1. PASSIVE TRAVEL-TIME ESTIMATION

Estimating the geometry of a sensor network can be ap-
proached by inversing intersensor-distance matrices. Those
distances can be assessed from the local speed of sound
and the intersensor propagation delays in a non dispersive
medium [7, 20].

We aim at providing a study of the performances of pas-
sive estimation of those propagation delays. The framework
will be restrained to a single pair of sensors embedded in
the propagation medium. The term passive here means that
sources in the medium do exist but are uncontrolled. The
combination of ergodicity with such sources allows the com-
putation of noise correlations [5], which in turn allows to de-
rive the Green function between the two sensors using gen-
eralized Ward identities. The propagation delay is eventually
estimated as the argument that maximizes the retrieved Green
function. Domains of applications are broad and include seis-
mology [4, 6, 11, 12], acoustic [5, 10], structural analysis [13]
and electromagnetism [6].

The approach raises challenging signal processing issues.
In particular, given that the sources are uncontrolled, they can
be assumed to be random processes with unknown temporal
and spatial spectral properties. Performances of estimation
are then to be investigated. Equivalent areas of the concept
are output-only approaches in mechanical structure analysis
or seismic interferometry in acoustics and seismology.

One may therefore recall that identification of linear sys-
tems is achievable through the knowledge of second order

statistics of the inputs and those of corresponding outputs.
This reasoning is appliable to our framework, where infor-
mation on the medium is indeed contained in the statistics of
the sensed fields. 2nd order statistics theoretically suffice to
achieve identification.

This approach leads to combine 2nd order statistics of
the sensed fields with the dispersion relation of the medium,
which is referred to as the Ward identity (9). Such combi-
nation provides a Green’s function estimate from the mea-
sures [21]. It is important to point out that most of the de-
scriptions of this problem were derived with ambient ”noise”
as sources: white noise sources in the sense that they are spa-
tially and temporally uncorrelated. In practice, this assump-
tion is of course never met due to the non existence of such
perfect natural sources or even for the band-limited measure-
ment devices. However, feasability of the approach is unar-
guable as the protocol has repeatedly proven efficient and this
is why we believe it is of importance to study the passive
estimation performances given a relaxed assumption on the
sources distribution, thus introducing non white source distri-
butions.

The closest investigations to our purpose are [15], study-
ing the impact of instrumentation time shifts on travel-time
retrieval and [16, 17], studying the impact of the spatial dis-
tribution of sources on the Green function retrieval for a free
acoustic propagation medium. However, up to our knowl-
edge, no lower bound for passive propagation delay estima-
tion has never been proposed.

First, an extension of Ward identity to non white sources
is presented in section 2. A lower bound for the variance of
the presented passive propagation delay estimator is then pre-
sented in section 3, which takes the same form as the active
delay estimation Cramer-Rao Lower Bound. Results are il-
lustrated with a simulation.

2. ON PASSIVE AUTO-LOCALIZATION

In this section, an overview of passive propagation delay esti-
mation protocol using Ward identity is presented. Ward iden-
tity is recalled and derived for non white sources. The section
ends with the passive propagation delay estimator expression.



2.1. From the propagation equation to Green’s function

Classical physics allows to describe interactions between a
source and a resulting field with propagation equations:

Af(t, ~x) =

[
∂2

∂t2
+D ∂

∂t
+ L

]
f(t, ~x) = s(t, ~x) (1)

Equation (1) is a general instance of wave propagation
equation in a medium that is or can be approximated as ho-
mogeneous, isotropic and non dispersive. s(t, ~x) is the source
and f(t, ~x) is the resulting field. L is a propagation operator
and D is a dissipation operator. Both of them are spatial op-
erators and in the case of a visco-acoustic medium, they are
proportional to the 3D-Laplacian operator [19]. Equation (1)
can be used to describe mechanical structures with finite num-
ber of degrees of freedom, vibrating strings and membranes,
beams and plates, acoustic and electromagnetic fields in fluids
and elastic propagation media.

The Green function G(t, ~x|t0, ~y) is the impulse response
for a wave propagation medium X . It stands for the response
sensed at ~x at time t, when a pulse is triggered from ~y at time
t0. When (1) is invertible, its kernel turns out to be Green’s
function. Green’s’ function indeed allows to fully character-
ize the medium X , and expresses the link between the source
and the field as a filtering process:

f(t, ~p) =

∫
G(t, ~p|t′, ~x)s(t′, ~x)dt′d~x = (G ⊗

T,S
s)(t, ~p) (2)

where ⊗T denotes the classical time convolution and ⊗S de-
notes the generalized spatial convolution.

2.2. Green’s correlation and Ward identity

In the passive context, sources are unknown stochastic pro-
cesses in time and space. While propagating, their wavefronts
are shaped by the medium; filtering induces information on
the medium which remains present in the field. Techniques
have therefore been developped to study nth order statistics
of signals; cyclostationarity or high order statistics are exam-
ples of tools used e.g. on telegraph waves, or in ‘blind chan-
nel equalization’ [22]. Here however the approach relies on
Ward identity for which the framework focuses on 2nd order
statistics only. Let γf (τ, ~x, ~y) be the cross-correlation of a
stochastic and stationary field f measured at two points ~x and
~y:

γf (τ, ~x, ~y) = E [f(u, ~x)f(u+ τ, ~y)] (3)

By combining Equation (2) and (3), a generalized inter-
ference formula is derived to relate the field f generated by a
source in ~s, to the signals sensed at two locations ~x and ~y:

γf (τ) =
(
G(t, ~x|0, ~s) ⊗

T,S
γs(t, ~s, ~s) ⊗

T,S
G(0, ~s|t, ~y)

)
(τ) (4)

To assess the effect of non white sources on the Ward
identity, we restrict the scope of the study to the case where

only one wave vector impiges on the ‘array’ formed by the
sensors. This is case for e.g. a point source placed at large
distances from the sensors. In the frequency domain, for any
function z, let z̃(ω,~k) =

∫
R,X z(t, ~s)e

−j(ωt−~k·~s)dtd~s be its

Fourier transform in both time and space. Note that G̃(ω,~k)
is the spatio-temporal Fourier transform of the solution of (1)
when s(t, ~x) = δ(t− t0, ~x− ~x0).

The correlation γG of two measures of the field is a func-
tion of the source auto-correlation function, that comes as a
general interference formula:

|Ã(ω,~k)|2γ̃G(ω,~k) = γ̃s(ω,~k) (5)

which can also write:

Ã(ω,~k)∗γ̃G(ω,~k) = G̃(ω,~k)γ̃s(ω,~k) (6)

Green’s correlation emerges from (6) under the assump-
tion of white sources, which was conducted in [12, 18, 21].
The key to access the Ward identity from (6) is the dispersion
relation extracted from (1):

ω2 + jηωα − v2k2 = 0 (7)

where α, η account for the dissipation model. In geophysics,
the signals propagating over hectokilometric distances are of-
ten spectrally contained in ∆f < 100 Hz and a constant
dissipation model can be assessed. On the contrary in more
general viscoelastic propagation (including short distances),
D ∝ L. Both ways, this leads to the Ward identity (9), re-
lating more explicitly Green’s correlation function to Green’s
function. The Ward identity was shown in [18, 21]. Here we
present it for non white sources. From (6) and (7) and know-
ing that γ̃s(ω,~k) is real, the imaginary part of (6) writes:

ηωαγ̃G(ω,~k) = γ̃s(ω,~k)× Im
[
G̃(ω,~k)

]
(8)

Equation (8) allows to derive a Ward identity in a bound-
ary free medium for non white sources:

∂α

∂tα
γG(t, ~x, ~y) =

1

η
γs(t, ~s) ⊗

T,S
Odd

[
G(t, ~x, ~y)

]
(9)

In this expression, it was noted in [12, 18] that the dissi-
pation operator appears necessary for passive Green function
retrieval. IfD is null, η equals zero, which prevents to retrieve
the Green function from (9). Note the odd part of the Green
function suffices to reconstruct the function.

From (8) and (9), we can observe that the spectral context
of the signals of interest depend on both the frequency spec-
trum of the source and the transfer function of the propagation
medium. Furthermore, the physical nature of this latter may
lead to quite significant modifications of the relative impor-
tance of D and L.



2.3. Parameter extraction from the Green function

When the Green function satisfies (1) (e.g. electromagnetic
waves in air, acoustic waves in fluids, P and S seismic waves
in homogeneous media), the estimated travel-time τ̂(~x, ~y) be-
tween the sensors located at ~x and ~y is the argmax of the am-
plitude of the estimated Green function.

For example, for an homogeneous and isotropic boundary
free and dissipative acoustic propagation medium, the studied
field is the pressure field. In general, for a low dissipation
case and unbounded medium, the Green function is shown to
express as [20]:

G(t, ~y|t0, ~x) ≈ exp(−a(t− t0))

4πd(~y, ~x)
δ(t− t0− τ(~x, ~y)) (10)

where a is the damping factor, d the intersensor distance.
Note that a bounded medium will exhibit a series of atten-

uated delays. Again here, we must emphasize that the time
delay is nothing bu the distance ||~x − ~y|| divided by the ve-
locity of the wave (assumed constant). Given that attenuation
gets stronger with time, it makes sense to design the passive
travel-time estimator noted τ̂ as:

τ̂(~x, ~y) = arg max
t

Ĝ(~y, t|~x) (11)

where Ĝ is an estimate of the Green function.

3. A VARIANCE LOWER BOUND

Feasability of passive identification using Ward identity is
unarguable and yet performances are seldom studied. In this
section, a lower bound for the variance of the passive travel-
time estimator τ̂ is presented. To that purpose, we consider
the simple case of a set of independent plane waves imping-
ing on the sensors set. Note that this assumption corresponds
to the case where the distance source-sensors is much larger
than the inter-sensor distance and to a set of independent point
sources. Discussing the consequences of a departure from this
model is deferred to a further communication.

To account for spatial diversity in an accurate and easy
manner, let us work under the assumption of plane wave
sources that will be described by their temporal auto-correlation
function γsi(t) and incidence angle θi. Spatial diversity is
attained by the existence of a distribution of incidence angles
whereas the temporal auto-correlation function γs(t) of the
source informs on the temporal statistical properties.

Suppose that a single source with incidence angle noted
θi be selected. A classical estimator for the propagation delay
for this special case is:

τ̂(~x, ~y) =
1

cos(θi)
×arg max

t
|γxi,yi(t)|×Π(t ≥ 0) (12)

where xi(t) = yi(t−∆i/v) and Π(t ≥ 0) is the gate function.

In an active context, travel time estimation relies on a con-
trolled transmitter and receiver. Received signal is comonly
designed as a delayed attenuated version of the emitted sig-
nal, corrupted by an additive measurement noise. Estimation
theory allows to derive a Cramer-Rao lower bound σ2

CRLB(τ)
on the active travel time estimator [8], of the form:

σ2
CRLB(τ) =

[
SNR× F̄ 2

]−1
(13)

where SNR is the signal-to-noise ratio and F̄ measures the
bandwidth of the signal. The problem is fundamentally iden-
tical to ours, as it consists in the detection of a maximum am-
plitude of a correlation function computed from noisy data.

In our case, the estimator relies on unknown multiple inci-
dence angles, each of which being associated to a multiplica-
tive bias in the estimation. Furthermore, in our passive con-
text, the use of SNR deserves clarificaton. ‘Ambient noise’
being the signal of interest, it is not to be mistaken with any
part of the signal that does not carry information useful to
the inter-sensor distance estimation. A physical discrimina-
tion between those two noises would be that ambient noise is
sensed by both sensors whereas the other one is an additive
contribution visible by either one of them, e.g. measurement
noise. Whilst normally presented in the case of active identi-
fication, this concept is here extended to the passive case.

3.1. Information carried by one source

From (11), the finite precision of the measure is embodied by
the deterioration of the path delay difference estimator ∆̂i by
an additive zero-mean Gaussian noise with variance σ2

CRLB

suggested from (13). The inter-sensor travel-time estimator,
for a single source, along the optical path is biased by a mul-
tiplicative as expressed in Equation (12). Assuming normal
distribution for the estimation error, we obtain from Equa-
tions (12) and (13):

τ̂(~x, ~y) ∼ N
( ∆̂i

v cos(θi)
,
σ2
CRLB

cos2(θi)

)
(14)

Note that in this formula, the bias has been taken into ac-
count, although in a passive context θi is usually unknown.
From (14), the Fisher information associated to that single
source can be expressed as:

I(θi) =
cos2(θi)

σ2
CRLB

(15)

Note that (15) allows to identify symetries and invariances
as I(θi) = I(π − θi) = I(−θi) which enables to pick θi in
[0;π/2] only. The information carried by a source i whose
incidence vector ~k statisfies 〈~x− ~y,~k(θi)〉 = 0, appears to be
zero. On the other hand, the variance tends to its minimum
σ2
CRLB as the source and the sensor array are aligned.



3.2. Extension to a set of sources

The passive approach leads to have no prior on θ, leaving an
unsolvable bias to the travel time estimate, from (14). How-
ever, the passive identification protocol consists in accounting
for the contributions of a set of sources with random incidence
angles (or multipath propagation) providing a wide angle of
arrival diversity. Consequently, let Θ = {θi, i = 1 . . . N} be
a set of N incidence angles. It is a random sequence with
values in S ⊂ [0;π/2] for reasons explaned above. Take
a set of i.i.d. sources with incidence angles Θ and tempo-
ral spectral bandwidth F̄ 2. Furthermore, their contribution to
identification will be assessed of identitical weight through
identical SNRs at receivers. Spatial information brought by
each source consequently adds up to form the total Fisher in-
formation I(Θ):

I(Θ) =
1

σ2
CRLB

∑

θ∈Θ

cos2(θ) (16)

The variance due to the spatial distribution of N sources with
incidence angles in S is here exhibited with continuous sums,
using the law of large numbers on the set Θ with a Monte-
Carlo process for the computation of

∫
S cos2(θ)dθ:

σ2
S = I−1

S = σ2
CRLB

µ(S)

N
∫
S cos2(θ)dθ

(17)

where µ(S) measures the volume of the support S. The an-
gular bandwidth as it is presented in [8] can then be extended
to the spatial dimension. σ2

S can then be written as a function
of the spatial angular bandwidth β̄2:

β̄2 =
−1

µ(S)

∂2

∂ζ2

[ ∫

S
cos(θ) cos(θ − ζ)dθ

]
ζ=0

(18)

Eventually, by combining Equations (17) and (18), a
lower bound on the variance of passive propagation delay
estimation writes:

σ2
passive(τ̂) =

1

N

1

SNR

1

F̄ 2

1

β̄2
(19)

where β and F respectively relate to spatial and temporal
bandwidths. N is the number of sources. As a consequence,
(19) writes as an extension the active CRLB (13).

3.3. Illustration : narrow band signals

In this simulation, passive distance estimation is performed
for a set of temporally narrow band sources with uniform
spatial distribution. In this configuration, Ward identity (9)
applies. The simulated medium is 3-dimensional, boundary
free and the Green function satisfies (10):

G(t, ~y|0, ~x) =
exp(−at)
4πd(~x, ~y)

sinc
(
2πfs(t− τ(~x, ~y))

)

where fs = 1Hz. The damping is here assumed constant in
the sense that D = a = 10.

Sensors are 200u distant1 from each other while the waves
propagates with a velocity of 34u/sec. The sampling fre-
quency is 100Hz. The fields recorded at each sensor are used
to compute the Green correlation ; records of length 100 times
longer than the travel time between the sensors are used for
the estimation. The Green correlation is averaged on all 2048
sources and then numerically time-differenciated.

Firstly, sources are white Gaussian i.i.d. random pro-
cesses with unit variance. They are sequentially lowpass fil-
tered with cut-off frequencies fc ranging from fs to 0.01fs.
SNR was set to 50dB; it was chosen considering that only
low electronic noise is spoiling the measurement. Further-
more, sources are uniformely spatially distributed on a sphere
around the sensors with radius 1000u: their contributions to
passive identification is thus approximatively equivalent in
the sense that have similar energy at the sensors. TOA es-
timation was averaged over 250 iterations.

0
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Fig. 1. Passive Green functions estimates with narrowed time
spectral sources psd. The black line shows the theoretical
Green function Gth. The red line shows the result of pas-
sive identification when fc = fs. The blue line shows the
result when fc = 0.5fs.

Results are displayed in fig. 1 and 2. Although estima-
tion is bandlimited and thus less accurate, the argmax of the
amplitude still holds as a TOA estimator. The lower curva-
ture however induces a higher variance in the estimation. The
existence of a bias will be investigated in further work.

4. CONCLUSIONS

In this paper, we presented an extension of the Ward iden-
tity for non white sources. The ward identity leads to recon-
struct a Green function on a bandwidth that is the bandwidth
of the sources. A lower bound for the variance of the pas-
sive travel-time estimator was then derived in a plane wave
sources context. This expression allows to propose an an-
alytical expression of the minimal attainable variance when
the sources bandwidth shrinks. The signal to noise ratio that

1u is an arbitrary unit of distance.
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Fig. 2. (dotted line) Mean squared error of the passive dis-
tance estimation as a function of the bandwidth of the sen-
sors. The normalized bandwidth of the sensors is represented
on the x-axis as the ratio fc/fs. The mean squared error in-
creases as the spectral bandwidth decreases. (continuous line)
Theoretical variance of the estimator for the corresponding
setup. µ(S) = π/2 so β̄2 = 1/2 from Equation (18). Even-
tually, F̄ 2 is equal to 3/fc2.

appears in the bound accounts for the transformation of the
Ward identity in a numerical filtering scheme.

Upcoming work will focus on a geometrical formulation
of the information carried by a set of sources in any Franhauf-
fer propagation regime. The results shown in this paper offer
a possible framework for studying the reliability of autolocal-
ization of large sensor networks from the estimation of some
distances between sensor pairs. Such extension can now be
tackled on both theoretical and practical (real or simulated)
experiments.
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