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ABSTRACT 
 
In this paper a new method of source number estimation in 
non-Gaussian noise is presented. The proposed signal sub-
space identification (SSI) method involves estimation of the 
array signal correlation matrix and determining the number 
of positive eigenvalues of the estimated correlation matrix. 
The SSI method is applied to the problem of estimating the 
number of plane wave narrowband signals impinging on a 
uniform linear array. It is shown that the performance of the 
SSI method in non-Gaussian heavy-tailed noise is signifi-
cantly better than that of the widely used minimum descrip-
tion length (MDL) method and the recently proposed entro-
py estimation of eigenvalues (EEE) method based on ran-
dom matrix theory.  
1 
 

Index Terms—Non-Gaussian noise, noise variance es-
timation, signal subspace identification, source number 
estimation 
 

1. INTRODUCTION 
 
High-resolution direction-of-arrival (DOA) estimation is a 
problem of great interest in several applications such as 
radar, sonar, wireless communication, biomedical engineer-
ing, etc. High-resolution DOA estimation techniques such as 
MUSIC and ESPRIT require prior knowledge of the number 
of sources. Methods of source enumeration based on the 
classical information theoretic criteria include the Akaike 
information criterion (AIC) [1], minimum description length 
(MDL) [2], Bayesian information criterion (BIC) [3], pre-
dictive description length (PDL) [4], Gerschgorin disk esti-
mator (GDE) [5], and several variants of these. Other me-
thods include bootstrap techniques [6, 7], random matrix 
theory [8] and entropy estimation of eigenvalues (EEE) [9]. 
In most of these methods [1-4, 6, 8], noise is assumed to be 
Gaussian and white. In this paper, we present a new method 
of source number estimation in white noise with an un-
known probability distribution. The proposed method is 
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based on a comparison of an estimate of the noise variance 
with estimates of eigenvalues of the array data correlation 
matrix. All the estimates are obtained from a sufficiently 
large number of snapshots of the array data vector.  

The paper is organized as follows. The method of source 
number estimation is described in Section 2. Simulation 
results are presented in Section 3 to illustrate the perfor-
mance of the method under different conditions. Conclu-
sions are presented in Section 4.  
 

2. SOURCE NUMBER ESTIMATION 
 

Let the signals received from 퐽 uncorrelated narrowband 
sources be measured by an 푁-sensor array, with 푁 > 퐽. 
Consider 퐿 snapshots of the 푁-dimensional data vector 
풙(푡): 

풙(푡) = 풔(푡) +풘(푡) = 풂 ∅ 푝 (푡) +풘(푡); 

                                                    푡 = 0, … , 퐿 − 1;  퐿 > 푁.        (1) 
 
In (1), 풔(푡) is the array signal vector, 푝 (푡); 푗 = 1, … , 퐽; 푡 =
0, … .퐿 − 1  are the complex amplitudes of the received 
signals modeled as mutually uncorrelated complex Gaussian 
random variables with variances 휎 , 

풂 ∅ = 1 푒 ∅ … 푒 ( ) ∅  is the steering vec-
tor associated with the 푗  source located at an unknown 
direction ∅ , and 풘(푡) is the noise vector independent of the 
signals, with zero mean and correlation matrix 푹 = 휎 푰. 
Let the eigenvalues of the data correlation matrix 푹 =
E[풙(푡)풙 (푡)], arranged in non-decreasing order, be denoted 
by 휆 , , … , 휆 , , and let 휎  be the noise variance; so that we 
have 휆 , ≥ 휆 ,  for 푛 < 푘, 휆 , > 휎  for 푛 ≤ 퐽, and 
휆 , = 휎  for 푛 > 퐽. If the actual eigenvalues and noise 
variance are replaced by their estimates 휆 , ;푛 = 1, … ,푁  
and 휎 , obtained from a sufficiently large number of snap-
shots of 풙(푡), we expect the following relations to hold: 
휆 , > 휎  for 푛 ≤ 퐽 and 휆 , ≤ 휎  for 푛 > 퐽. Hence an 
estimate of 퐽 may be obtained as 퐽 = the largest integer 푘 
such that 휆 , > 휎 . 

An estimate of the data covariance matrix 푹  is given by 
푹 =

 
푿푿 , where 푿 = [풙(0) …풙(퐿 − 1)]. The noise 



variance may be estimated by extending a procedure pro-
posed by Bioucas-Dias and Nascimento [5] for estimating 
the noise correlation matrix 푹 . Let 풀 = 푿 . The 푛  col-
umn of 풀, denoted by 풚 = [푦 (0) …푦 (퐿 − 1)] , is the 
noisy signal waveform measured at the 푛 sensor. Let 
풀 = [풚 …풚 풚 …풚 ] be the matrix obtained by 
removing the 푛  column from 풀. In view of the high corre-
lation between the elements of the signal vector 풔(푡) for all 
푡, we write the following regression relation    
 

풚 = 풀 휶 + 휼 ;푛 = 1, … ,푁,               (2) 
 
where 휶  is the (푁 − 1)-dimensional regression vector and 
휼  is the modelling error vector. For each 푛 ∈ {1, … ,푁}, the 
least squares estimator of 휶  is given by 

휶 = 풀 풀 풀 풚 .                   (3) 

The vector 흃 = 풀 휶  may be considered to be the linear 
prediction of the signal waveform 흃 = [푠 (0) … 푠 (퐿 −
1)]  at the 푛  sensor derived from the noisy signal wave-
form measurements at the other sensors. An estimate of the 
noise waveform 휼 = [푤 (0) …푤 (퐿 − 1)]  is therefore 
given by  

휼 = 풚 − 흃 = 풚 − 풀 휶 ;푛 = 1, … ,푁.        (4) 

The corresponding estimate of the noise correlation matrix 
푹  is   

푹 =
1
퐿

[휼 …휼 ] [휼 …휼 ].                  (5) 

In the present context, we have assumed that 푹 = 휎 푰. Let 
휆 , ;푛 = 1, … ,푁  be the eigenvalues of 푹  arranged in 

non-ascending order. Define  

                            휇 =
1
푁 휆 , =

1
푁 푡푟 푹 .                    (6) 

Ideally, the mean eigenvalue 휇  may be considered to be an 
estimate of noise variance 휎 , and those eigenvalues of 푹  
which are larger than 휇  may be considered to be the signal 
eigenvalues. However, 푹  and 휇  are biased estimates of  
푹  and 휎  for the following reasons. (1) The estimates are 
derived from finite data. (2) 흃  is the linear prediction of 
signal waveform 흃  obtained from the noisy signal wave-
forms {풚 ;푚 ≠ 푛}. Since the energy of 풚  is larger than 
that of 흃 , we may expect the energy of 흃  to overestimate 
the energy of 흃 . Hence the energy of 휼 = 풚 − 흃  would 
underestimate the energy of the noise waveform 휼 . Conse-
quently, the mean eigenvalue 휇  underestimates the noise 
variance 휎 . Underestimation of 휎  leads to an overestima-
tion of the number of sources 퐽, particularly so when 퐽 = 0 

or 1. Hence we propose the following procedure for estimat-
ing the noise variance and the number of sources.  

Define 

             휇 , =
1

푁 − 푘 휆 , ;푘 = 0,1, … ,푁 − 1,          (7) 

Since we have 휆 , ≥ 휆 ,  for 푛 < 푘, it follows that 
휇 , > 휇 , > ⋯ > 휇 , . If there are 퐽 sources, 휇 ,  should 
ideally be equal to 휇 . If 퐽 is known, the following estimator 
of 휎  may be used to avoid underestimation: 휎 = 휆 , +
휃 휇 , − 휇 , where 휃  is the hard thresholding operator 
defined as  

                            휃 (푥) = 푥     if 푥 > 0
0 otherwise.                              (8) 

Since the value of 퐽 is not known, we may define 

         휆 ,
( ) = 휆 , + 휃 휇 , − 휇 ;푘 = 0,1, … ,푁 − 1,     (9) 

and proceed to estimate the number of sources as the smal-
lest integer 푘 such that 휆 ,

( ) ≥ 휆 , . 
The procedure described above provides a good estimate 

of the number of sources 퐽 if 퐽 ≥ 2. But the probability of 
overestimation is high if 퐽 ≤ 1. If 퐽 = 0, both 푹  and 푹  
are estimates of the noise covariance matrix. But the eigen-
values of 푹  are significantly smaller than those of 푹  
when 퐽 = 0, and consequently 휎 − 휇  is very large in this 
case. This deficiency can be overcome by adopting the re-
finement procedure described below.          
     Consider a set of random matrices  
 
                휝(푞) = [휷 (푞) …휷 (푞)];푞 = 1, … ,푄,             (10) 
 
where 휷 (푞) = [훽 (푞) …훽 (푞)] , and  {훽 (푞); 푙 =
1, … ,퐿;푛 = 1, … ,푁; 푞 = 1, … ,푄} are independent and 
identically distributed  random variables having approx-
imately the same distribution as the noise at the sensor out-
puts. Define the sample correlation matrix 푹 (푞) =
휝(푞)휝(푞) . Use the matrix 휝(푞) to construct another 

correlation matrix 푹 (푞) corresponding to the matrix 푹  in 
(5), using the regression-based procedure described there.  
Let the eigenvalues of 푹 (푞) and 푹 (푞) be denoted respec-
tively by 휆 , (푞), … , 휆 , (푞), and 휆 , (푞), … ,휆 , (푞). Equa-
lize the means of the two sets of eigenvalues by defining  
 
    휆 , (푞) = 휆 , (푞) + ∑ 휆 , (푞)− 휆 , (푞) ;     푛 =
                                                           1, … ,푁 ; 푞 = 1, … ,푄    (11)         
Define  
              Δ휆 = max , 휆 , (푞)− 휆 , (푞) ,                (12) 



                    휆 ,
( ) =

휆 , + Δ휆 , ;푘 = 0,1
휆 , ;푘 ≥ 2                       

.                   (13) 

 
Replace (9) by the following equation  

휆 ,
( ) = 휆 ,

( ) + 휃 휇 , − 휇 ;푘 = 0,1, … ,푁 − 1.      (14) 

The modified expression for 휆 ,
( )  given in (14) can be used 

to obtain estimates of 퐽,휎  and 푹  and 푹 : 
 
퐽 = the smallest integer 푘 such that   휆 ,

( ) ≥ 휆 , ,    (15)                                                            

        휎 = 휆 ,
( ) , 푹 = 휆 ,

( ) 푰,     푹 = 푹 −푹 .               (16)                                                                                            

Extensive simulations indicate that variation of either the 
noise probability density function (PDF) or the noise va-
riance does not have much influence on the value of the 
parameter Δ휆  defined in (12). Hence the proposed 
source enumeration method is robust to uncertainties in the 
noise PDF. The subspace spanned by the eigenvectors 
휆 , ;푛 = 1, … , 퐽  is identified as the signal subspace. Ob-

viously, 퐽 may also be interpreted as the number of positive 
eigenvalues of 푹 . We shall designate the proposed method 
of source number estimation as the signal subspace identifi-
cation (SSI) method. 

3. SIMULATION RESULTS 
 

We consider a uniform linear array of 푁 sensors with 퐽 
incoherent narrowband plane waves impinging from direc-
tions ∅ , … ,∅  with respect to the array axis. The number 
of sensors is 푁 = 15 in all examples, unless otherwise 
stated. We have compared the performance of the proposed 
SSI method with those of the MDL and EEE [9] methods 
for different noise distributions. The measure of perfor-
mance is the probability of correct estimation defined as 
푃 = 푃(퐽 = 퐽). 

In the first experiment, we compared the performance of 
SSI, MDL and EEE methods in Laplacian noise. Figure 1 
shows the plots of 푃  versus SNR for 퐿 = 300 snapshots. 
We considered three sources with equal SNR, located at 
∅ = 50°,∅ = 60°, and ∅ = 70°. For the same directions, 
plots of 푃  versus 퐿 for a fixed SNR are shown in Fig. 2. It is 
seen that the SSI method provides the best performance. For 
the SSI method, 푃  is very close to 1 for moderate values of 
SNR and 퐿. The MDL method performs poorly for SNR less 
than −10dB. Figure 3 shows plots of 푃  versus number of 
sensors 푁, at −12 dB SNR. It is seen that the performance 
of SSI keeps improving as 푁 is increased, while the perfor-
mance of EEE tends to saturate. Figure 4 illustrates the 
effect of variation of the number of sources 퐽 on the perfor-
mance of the SSI method. At low SNR, 푃  increases as 퐽 is 
reduced, as expected. For all the methods, 푃 = 1 when 
퐽 = 0.  

 

 
Fig. 1 Performance comparison of SSI, MDL 
and EEE for Laplacian noise. 푁 = 15, 퐿 =
300. Three sources at 500, 600, and 700. 

 

 
Fig. 2 Performance comparison of SSI, MDL 
and EEE for Laplacian noise. 푁 = 15, 푆푁푅 =
−12 푑퐵. Three sources at 500, 600, and 700.  
 

 
Fig. 3 Performance comparison of SSI, MDL  
and EEE for Laplacian noise. 푁 = 15, 퐿 =
300, 푆푁푅 = −12 푑퐵. Three sources at 500, 
600, and 700.  



 
 
    In the next experiment, we investigated the effect of in-
creasing non-Gaussianity of noise on the performance of the 
three methods. For this purpose, we considered the family of 
generalized Gaussian (GG) distributions and the family of 2-
component zero-mean Gaussian mixture (GM) distributions 
to model noise. The PDF of GG noise with unit variance is 
given by 푓 (푥) = 퐵(푝) exp[−퐶(푝)|푥| ], 푝 > 0, where 

퐶(푝) = 푝 ( ⁄ )
( ⁄ )

⁄
, 훤(. ) is the gamma function, and 

퐵(푝) is a normalization constant. The PDF is heavy-tailed 
for 푝 < 2, and the heaviness of the tail increases as 푝 is 
reduced. Noise is Gaussian for 푝 = 2, and Laplacian for 
푝 = 1. Figure 5 shows plots of 푃  versus the GG noise ex-
ponent 푝, for all the methods under consideration. The per-
formance of SSI is seen to be better than that of the other 
methods. Figure 6 shows plots of 푃  versus SNR for SSI for 
different noise distributions, viz. Gaussian, Laplacian, GG 
with 푝 = 0.5, GM with (훼 훼⁄ = 0.1, 휎 휎⁄ = 100), and 
GM with (훼 훼⁄ = 0.1, 휎 휎⁄ = 1000). Here, 훼  and  훼  
denote the probabilities of the GM components, and  휎  and 
휎  are the respective variances. It is seen that, in all cases, 
푃  is very close to 1 for the SSI method if SNR exceeds −10 
dB. 
    In another experiment, we compared the resolving capa-
bility of the methods in Laplacian noise, by considering two 
sources with a small angular separation. Figure 7 shows 
plots of 푃  versus angular separation, when one source is at 
a fixed bearing of ∅ = 50°. Once again, it is seen that the 
SSI method outperforms the other two. 
 

4. CONCLUSION 
 

In this paper we presented a new method of source number 
estimation in non-Gaussian noise. The first step in the SSI 
method involves estimation of the noise correlation matrix. 
The noise variance is then estimated using a heuristic ap-
proach. Finally, the array signal correlation matrix is esti-
mated and the number of sources is determined as the num-
ber of positive eigenvalues of the estimated signal correla-
tion matrix. The method was applied to the problem of esti-
mating the number of plane wave narrowband signals im-
pinging on a uniform linear array. It was shown that the 
performance of the SSI method in non-Gaussian heavy-
tailed noise is better than that of the recently proposed EEE 
method, and significantly better than that of the widely used 
MDL method.  
 
 

 

Fig. 4 Performance of SSI in Laplacian noise 
for different number of sources. 푁 = 18,퐿 =
300. 

 
 

 

Fig. 5 Performance comparison of SSI, MDL 
and EEE for different values of exponent 푝 of 
GG noise PDF.  퐿 = 300,푆푁푅 = −12 푑퐵. 
Three sources at 500, 600, and 700. 

 
 



 

Fig. 6 Performance of SSI for different noise 
distributions. 푁 = 15,퐿 = 300. Three sources 
at 500, 600, and 700.  

 
 

 

Fig. 7. Comparison of resolving capability of 
SSI, MDL and EEE. Plots of probability of cor-
rect estimation (푃 ) vs. angular separation be-
tween two sources. One source is at 50°. 
푁 = 12,퐿 = 300,푆푁푅 = −10 푑퐵. 
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