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ABSTRACT
This paper introduces the cluster score (C-score) as a mea-
sure for determining a suitable number of clusters when
performing speaker clustering in a speaker diarization sys-
tem. C-score finds a trade-off between intra-cluster and
extra-cluster similarities, selecting a number of clusters with
cluster elements that are similar between them but different
to the elements in other clusters. Speech utterances are rep-
resented by Gaussian mixture model mean supervectors, and
also the projection of the supervectors into a low-dimensional
discriminative subspace by linear discriminant analysis is
assessed. This technique shows robustness to segmentation
errors and, compared with the widely used Bayesian infor-
mation criterion (BIC)-based stopping criterion, results in
a lower speaker clustering error and dramatically reduces
computation time. Experiments were run using the broadcast
news database used for the Albayzin 2010 Speaker Diariza-
tion Evaluation.

Index Terms— Speaker Clustering, Cluster Similarity,
Linear Discriminant Analysis

1. INTRODUCTION

Speaker clustering is a task consisting of grouping a set of
speech segments in clusters. Each cluster must only include
the speech segments of one speaker, and there must be only
one cluster per speaker. Clustering is used in speaker diariza-
tion tasks, in which an audio stream is automatically seg-
mented into speaker homogeneous segments. These segments
are then clustered according to speaker identities [1]. Errors
during the segmentation process influence the clustering task,
due to the mis-classification of speech and non-speech and the
removal of speaker change-points.

In speaker clustering, it is common to represent the
speech segments as supervectors obtained by concatenat-
ing the means of an adapted universal background model
(UBM) [2]. Subspace projection techniques are widely used
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in speaker identification, in order to improve the separabil-
ity of the different classes and to reduce the dimensionality
of the data. The different subspace projection techniques
can be divided into supervised and unsupervised techniques.
Among the supervised techniques, a classic approach is lin-
ear discriminant analysis (LDA) [3] and variants, such as
kernel LDA [4] and probabilistic LDA [5]. The unsupervised
techniques include principal component analysis [6] and the
factor analysis-based iVector approach [7]. The use of super-
vised techniques for speaker clustering is not straightforward
due to the fact that the number of speakers (clusters) and their
identities are unknown. Thus, only unsupervised or partially
supervised projection techniques can be used.

The literature refers to several approaches to the speaker
clustering task: the classic Bayesian information criterion
(BIC) approach [8], the information change rate (ICR) [9]
and the generalized likelihood ratio (GLR) [10], among oth-
ers. Nevertheless, how to decide the number of clusters has
not been satisfactorily addressed.

In this work, a method for selecting the number of clus-
ters called cluster score (C-score) is presented, which is com-
petitive both in terms of computational efficiency and perfor-
mance. It consists of a measure that finds a trade-off between
intra-cluster and extra-cluster similarities [11]. The C-score
is combined with a partially supervised projection technique
based on LDA.

The rest of the paper is organized in sections that describe
the following: Section 2, feature representation and the LDA
projection technique; Section 3, the clustering strategy and
the C-score technique for selecting the number of clusters;
Section 4, the database and the metrics used for assessing the
diarization system; Section 5, our experimental results; Sec-
tion 6, conclusions and future research.

2. FEATURE REPRESENTATION

Given an audio stream which was segmented into a set of ns
speech segments S = (S1, . . . , Sns) the following steps are
applied:
• First, acoustic features are extracted from the wave-

form. Specifically, 12 mel-frequency cepstral coefficients
(MFCCs) and normalized log-energy are extracted every



10 ms using a 25 ms Hamming window, and augmented
with first and second order dynamic coefficients resulting
in a feature vector of dimension N . Cepstral mean and
variance normalization are also applied.

• For each segment Si, a UBM of R mixtures is adapted
to its corresponding acoustic features using the maximum
a posteriori (MAP) algorithm. As a result, a set of R
adapted mean vectors of N features is obtained, and these
means are concatenated forming a supervector vi of di-
mension D = RN .

• The set of segments is now represented by means of ma-
trix V = (v1v2 · · ·vns), where the ith column of V is
the supervector that represents segment Si.
The feature representation described above represents a

set of speech segments by means of a matrix V, where each
column is the supervector corresponding to one speech seg-
ment or, equivalently, each column of V is a point in a ref-
erence space defined by the UBM. The aim of the clustering
task is to group these points into homogeneous classes, and
to do so, it is important that the points belonging to the same
class are close to each other and, at the same time, far from
the points belonging to the other classes. Thus, in this work,
LDA is applied to the supervectors in order to reduce their di-
mensionality while increasing the separability of the different
classes [3]. By training a transformation matrix X, the origi-
nal data can be projected into a more discriminative subspace
as follows:

VLDA = VT ·X (1)

where X ∈ <D×DLDA and VLDA is a matrix whose ith

column represents the speech utterance Si in a discrimina-
tive space where the original supervector vi of dimension
D is now a supervector vLDAi

of dimension DLDA, with
DLDA < D.

A procedure to train X must be defined. Supervised train-
ing is ruled out for this application since the number of speak-
ers is not known a priori. Thus, the partially supervised train-
ing proposed in [12] is performed: a speaker discriminative
transformation matrix X is trained in a training dataset, where
the number of speakers is known, and this transformation is
then applied to the test dataset.

3. SPEAKER CLUSTERING STRATEGY

Once the speech segments are represented by a matrix V
(VLDA) as described in Section 2, speaker clustering is per-
formed. Agglomerative hierarchical clustering (AHC) is used
in this work for this task, due to its simplicity and acceptable
results [9]. In this algorithm, each speech segment initially
constitutes a cluster in itself. The distance between clusters is
computed and the most similar pairs are merged. This process
is repeated until a stopping criterion is met [13].

As described in Section 2, each column of V (VLDA)
is a vector in a reference space defined by the UBM. Thus,

the similarity between pairs of speech segments can be com-
puted straightforwardly using the cosine similarity between
the two corresponding vectors. As stated in [12], the repre-
sentation of the information by means of supervectors shows
very strong directional scattering patterns, which makes the
direction of the points more informative than their magnitude.
AHC decides whether to merge two clusters by means of a
merge criterion. Experiments with the database used in this
work were run to decide which merge criterion to use. Af-
ter assessing the single-link, complete-link, average-link and
Ward’s methods [14], results showed that the merge criterion
that performed best was the average-link approach, in which
the distance between two clusters is the average of all pair-
wise distances between the elements in the two clusters.

The clustering toolkit CLUTO [15] was used for this
stage. The segments were clustered until a sole cluster was
formed, resulting in a dendrogram that was cut at different
nodes. Thus, a set of clustering solutions C = (C1, . . . , Cns

)
was obtained.

3.1. Selecting the number of clusters

We present a method to decide the number of clusters at the
clustering stage based on intra-cluster and extra-cluster simi-
larities. These concepts have to be introduced before defining
the strategy to select the number of clusters. Hence, given a
clustering solution Cn = (c1, . . . , cn) with n clusters, where
cluster ci has #ci elements and where these elements are su-
pervectors as described in Section 2, In represents similarity
between elements in the same cluster and En represents aver-
age similarity of the elements in a cluster and the rest of the
elements in other clusters:

In =
1

ns

n∑
k=1

#ck

 1

#c2k

∑
vi,vj∈ck

cos(vi,vj)

 (2)

En =
1

n2
s −

∑n
k=1 #c2k

n∑
k=1

 ∑
vi ∈ ck
vj /∈ ck

cos(vi,vj)

 (3)

where vi and vj are the supervectors of segments i and j,
respectively. In is the mean of the average of all the cosine
similarities between the elements assigned to the same cluster,
and En is the sum of all the cosine similarities between each
element in a cluster and the elements of the other clusters,
weighted according to the distribution of the cluster sizes. It
should be noted that ns =

∑n
k=1 #ck.

In and En are computed by the CLUTO toolkit [11], and
their values range between -1 and 1.

We propose an approach for finding a clustering solution
Cn which maximizes In and minimizes En (or equivalently,
maximizes 1 − En). Since in real-world scenarios, as In in-
creases 1− En decreases and vice versa, a trade-off between
In and 1 − En must be achieved. This can be accomplished



by using the harmonic mean of În and 1−Ên, which we have
named C–scoren:

C–scoren =
2În(1− Ên)

În + (1− Ên)
(4)

where Ên and În are mapped versions of En and In to the
interval [0, 1].

Thus, our method selects a clustering solution Cn∗ with
n∗ clusters, where n∗ is chosen as follows:

n∗ = arg max
i=nmin,...,nmax

C-scorei (5)

The clustering procedure is summarized in Algorithm 1.
As can be seen in Eq. 5, the possible values of n∗ do not

range from 1 to ns but from nmin to nmax, with nmin > 1
and nmax < ns. This constraint is applied in order to avoid
over-clustering (almost all the segments would be in the same
cluster) or under-clustering (almost all the segments would
form a cluster on their own).

ns greatly varies depending on the data to be clustered;
thus, selecting a fixed value for nmin and nmax would result
in a satisfactory performance in some concrete situations but
a poor performance in others. Thus, it is proposed to select
nmin and nmax in function of ns as follows: nmin = ns

kc
,

nmax = 2ns

kc
. where kc is a constant. In this way, nmin

and nmax are in function of ns and there is only one control
parameter kc, which has to be tuned using development data.

Algorithm 1 AHC clustering with C-score
Require: Speech segments S = (S1, . . . , Sns )
1: MAP adaptation of UBM and concatenation of means→ (v1, . . . ,vns )
2: Matrix V | column v∗,i = vi

3: Transformation of V: VLDA = V ·X
4: AHC of matrix V (VLDA)→ clustering solutions C = (C1, . . . , Cn)
5: for i = nmin → nmax do
6: Compute C-score of Ci→ C-scorei
7: end for
8: return Cn∗ | n∗ = argmax

i=nmin,...,nmax

C-scorei

4. EXPERIMENTAL FRAMEWORK

The broadcast news database employed in Albayzin 2010
SDE [16] was used to assess the performance of the proposed
clustering approach. This database consists of broadcast news
programmes recorded from the Catalan 3/24 TV channel. It
is split into 24 sessions, 16 for development (57.5 hours) and
8 for testing (30 hours). The number of speakers per session
ranges from 30 to 250 (mean, 85; standard deviation, 24) per
session. The development dataset was used to adjust the free
parameters and to train the UBM and the LDA transformation
matrix X. The test dataset was used to assess the performance
of the different approaches.

Two scenarios were assessed in this work:

• Scenario with no segmentation errors (namely manual
segmentation): the set of manually segmented speaker
turns included in Albayzin 2010 SDE database was used
in this scenario. ns ranged from 150 to 1100 segments
per session.

• Scenario with segmentation errors (namely automatic
segmentation): a set of automatically segmented speaker
turns was obtained by a BIC-based automatic segmenta-
tion system that models the occurrences of change-points
by means of a Poisson process [17]. ns ranged between
100 and 630 segments per session, the false alarm (FAS,
non-speech labelled as speech) rate was 2.2% and the
missed speech (MS, speech labelled as non-speech) rate
was 7.3%, as shown in Table 1.
The metric used to assess the system was the time-based

speaker diarization error score (SPKE) [18], which is the per-
centage of speech incorrectly assigned to a speaker. This met-
ric reflects the amount of speech that was assigned to a wrong
speaker after optimal mapping of the automatically assigned
speakers and the reference speakers.

5. EXPERIMENTAL RESULTS

In order to assess the results obtained in selecting the num-
ber of clusters with the proposed C-score technique, the same
experiments were run following the classical BIC-based ap-
proach described in Section 5.1 below. Also, the performance
of the C-score and BIC approaches was compared with the
performance ceiling, which is the lowest possible SPKE. This
performance ceiling would be obtained if the number of clus-
ters that achieved the lowest SPKE were chosen in every case,
and represents a scenario where there are no errors when se-
lecting the number of clusters.

5.1. Reference system

In the BIC-based stopping criterion strategy [9], a value
∆BIC was computed every time two clusters i and j were
about to be merged:

∆BIC(i, j) = L(i, j)− λP (6)

where L(i, j) represents the likelihood of merging clusters i
and j minus the likelihood of not merging them, P is a penalty
corresponding to the number of free parameters in the model,
and λ is a free parameter. When ∆BIC > 0 the clusters were
similar, but when ∆BIC < 0, the clusters were not alike
enough to be merged, so clustering stopped at that point. It
must be noted that λ has to be tuned in order to adjust the
threshold that will cause the algorithm to stop clustering [19],
as low values of λ lead to a premature stopping of the clus-
tering procedure (resulting in too many clusters), and high
values of λ cause the algorithm to cluster data until too few
clusters are formed.



5.2. Parameter tuning

The feature vectors used in these experiments were of dimen-
sion N = 39 and the UBM used to obtain the supervectors
was a Gaussian mixture model with R = 64 mixture com-
ponents, leading to D = RN = 2496-dimensional mean
supervectors. The LDA transformation described in Section
1 projected the mean supervectors into vectors of dimension
DLDA = 200, which was the subspace dimensionality that
achieved the lowest SPKE in development.

Several parameters were tuned using the development
data: those of the speaker segmentation system and also the
free parameter of the two strategies for selecting the number
of clusters. The values of these free parameters that achieved
the lowest SPKE were selected. In the case of the C-score
strategy, the value selected for kc was 12, and in the case
of the BIC strategy, a different value of λ was selected for
each set of speaker turns and for each utterance representa-
tion: λ = 48, 50 for manually segmented speaker turns and
λ = 19, 35 for automatically segmented speaker turns with
the supervector and LDA representations, respectively.

5.3. Discussion

Table 1 shows the results obtained when clustering the man-
ually and automatically segmented speaker turns using the
C-score and the BIC. The C-score technique obtained a lower
SPKE than the BIC when representing the data with the mean
supervector approach (SV) and with the LDA projection.
Moreover, these SPKE were close to the performance ceiling.
The LDA representation achieved the best diarization results,
and it also had the lowest performance ceiling. It must be
noted that, despite the segmentation errors, SPKE was very
similar for the manually and automatically segmented speaker
turns. This means that the clustering technique is robust to
speaker segmentation errors.

Table 1. Diarization results and 95% confidence interval for
manually and automatically segmented speaker turns.

Segmentation Method FAS MS SPKE (%)
SV LDA

Manual
C-score

0% 0%
22.1± 1.0 16.1 ± 0.9

BIC 27.4 ± 1.1 29.0 ± 1.1
Ceiling 20.7 ± 1.0 13.6 ± 0.8

Automatic
C-score

2.2% 7.3%
19.7 ± 0.8 15.0 ± 0.7

BIC 21.6 ± 0.8 19.4 ± 0.8
Ceiling 15.8 ± 0.7 12.7 ± 0.7

The C-score method combined with the subspace projec-
tion technique outperformed other diarization systems that
used the same database, as can be confirmed in [16] and [20].

Measurements of the computation time of the techniques
employed in this work were taken, finding that the real-time
factor for the C-score was around 10−6, but was around 10−3

in the case of BIC. These measurements also revealed that the
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Fig. 1. Boxplots of the SPKE obtained with kc = 9, . . . , 14.
The red mark is the median, the edges of the box are the 25th

and 75th percentiles and the whiskers extend to the most ex-
treme datapoints.

computation time of the BIC approach was dependent on the
value of λ: the lower λ, the faster the algorithm.

As mentioned in Section 3.1, the C-score technique has
a tuning parameter kc that decides the range of possible val-
ues for the number of clusters (nmin and nmax). This pa-
rameter can be tuned using a development dataset, but it is
important to study its sensitivity. Experiments with values of
kc = 9, . . . , 14 were run, and results showed that the variation
of SPKE in the SV representation ranged from 19% to 24%,
but was much slighter in the case of the LDA representation,
as it ranged from 15% to 17%. Thus, this subspace projec-
tion technique gives robustness to the C-score algorithm, as
the sensitivity to its free parameter is reduced. Figure 1 repre-
sents boxplots showing the SPKE of the test dataset obtained
with different values of kc for the different data representa-
tions. These boxplots confirm that the subspace projection
technique improve the performance of the clustering stage
with respect to the SV representation. This LDA projection
also show less sensitivity to the selection of kc than in the case
of the SV representation. Thus, the LDA projection technique
give robustness to the C-score algorithm, as the sensitivity to
its free parameter is reduced.

6. CONCLUSIONS AND FUTURE WORK

This paper introduces the C-score measure for selecting
the number of clusters in a speaker diarization system that
achieves a trade-off between maximizing intra-cluster simi-
larity and minimizing extra-cluster similarity. This measure is
assessed when speech utterances are represented by a GMM
mean supervector and when this supervector is projected into
a discriminative subspace by applying LDA. Compared with
the well-known BIC-based approach, experimental results
showed that the C-score combined with the LDA projection
technique obtained an improvement in performance and a
reduction in computation time, proving as well to be robust



to segmentation errors, as results were not degraded when
clustering automatically segmented data. Also, this approach
proved to have little sensitivity to its free parameter kc, which
gives this algorithm a value added with respect to the BIC
algorithm, sensitive to its penalty weight λ. Furthermore, the
tuning for λ takes longer than for kc.

The performance shown by this clustering approach is
promising, but there is still room for improvement. The per-
formance ceiling, which is dependent on the clustering strat-
egy, has not been reached. The C-score strategy will be as-
sessed with different clustering approaches in order to im-
prove the results presented here. We also plan to study tech-
niques for fusing different clustering solutions, in order to as-
sess whether combining the approaches presented in this work
with other strategies leads to a better clustering solution.
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