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ABSTRACT

Active cancellation systems rely on destructive interference

to achieve rejection of unwanted disturbances entering the

system of interest. Typical practical applications of this

method employ a simple single input, single output arrange-

ment. However, when a spatial wavefield (e.g. acoustic noise

or vibration) needs to be controlled, multichannel active can-

cellation systems arise naturally. Among these, the so-called

overdetermined control configuration, which employs more

measurement outputs than control inputs, is often found to

provide superior performance.

The paper proposes an extension of the recently intro-

duced control scheme, called self-optimizing narrowband

interference canceller (SONIC), to the overdetermined case.

The extension employs a novel variant of the extremum-

seeking adaptation loop which uses random, rather than sinu-

soidal, probing signals. This modification simplifies design

of the controller and improves its convergence. Simulations,

performed using a realistic model of the plant, demonstrate

improved properties of the new controller.

Index Terms— extremum seeking, disturbance rejection,

adaptive control, active noise control,

1. INTRODUCTION

Narrowband disturbances, such as vibration and acoustic

noise, often arise in rotating mechanical systems. In the

range of high frequencies these disturbances may be elimi-

nate by traditional, passive, means. Typical examples of the

passive approach include screens, dampeners or absorbers.

Unfortunately, these well established measures often fail

at low frequencies. This is because their physical dimensions

and mass are related to the wavelength of the disturbances

they are to cope with. Simply put, to work well in the low

frequency range, passive solutions must be so large and heavy

that they are no longer attractive.

However, low frequency disturbances can be cancelled us-

ing active methods, which are based on the principle of de-
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structive interference. Vaguely speaking [1], the idea behind

the active approach is to generate a control signal such that,

at the point or area of interest, has amplitude equal to that of

the disturbance, but “opposite” (i.e. displaced by π) phase.

Multivariate active control systems gain particular rele-

vance when the volume of the area of interest becomes large.

This is because, to exert proper control of a large acous-

tic/vibration wavefield, it is desirable to both act and take

measurements at multiple locations.

Depending on the relative numbers of control inputs M
and measurement outputs N multivariate active control sys-

tems can be divided into three basic configurations: the so-

called undetermined case (M > N ), the fully determined

case (M = N ) and the overdetermined case (M < N ). Prac-

tical experience suggests that the overdetermined configura-

tion allows one to obtain the best control results [1]. This is

because, in the first two cases, an improper placement of the

sensors might cause the local control results to give an illu-

sion of very good performance. However, the true, spatially

averaged, performance may be unsatisfactory. On the other

hand, if an “excessive” number of sensors is employed, such

a situation is considerably less likely to occur.

The majority of existing active control solutions, of which

the FX-LMS algorithm [1] is the most important one, share a

common limitation – they require one to know the transfer

function of the controlled plant. In case when the plant is un-

known or time-varying they must be extended with means of

on-line plant estimation (see e.g. [2]). However, since the es-

timation process is carried out in a closed loop, identifiability

problems are not ulikely to occur. These may cause the plant

estimate may to become biased [3] which adversely affects

performance.

In our recent papers we proposed a novel approach to ac-

tive control, free of the above difficulty. The method, initially

introduced for the known frequency, single input single output

case [4], was later extended in a number of ways, including

the time varying frequency [5] and the multiple input multiple

output [3] cases.

Real world experience with the SONIC controller allowed

us to identify its two, potentially weak, points. First, the self-

optimization loop of the algorithm may not provide enough



robustness against nonlinear dynamics or large transport de-

lays. Second, the multivariate version of the algorithm does

not extend to the overdetermined case.

To cope with the first issue we proposed a modified self-

optimization loop [6], based on the extremum seeking (ES)

approach [7]. The modified loop proved substantially more

robust than the standard one.

Here we tackle the second problem. We propose an

overdetermined variant of the SONIC controller. The solu-

tion is, again, based on extremum seeking. However, un-

like [6] and [7], the new scheme employs random, rather than

sinusoidal, probing signal. This modification simplifies the

design of the control system considerably and makes it more

robust against the influence of the narrowband disturbance.

The paper is organized as follows. Section 2 states the

overdetermined active control problem. In section 3 the pro-

posed controller is introduced. Its analysis is carried out in

section 4. Section 5 presents simulation results.

2. PROBLEM STATEMENT

Consider the system governed by the following equation

y(t) = KP(q
−1)u(t− 1) + d(t) + v(t) , (1)

where t denotes discrete time, q−1 is the backward-shift op-

erator, q−1u(t) = u(t− 1), y(t) denotes the N -dimensional

system output, u(t) is the M -dimensional system input,

d(t) = aejω0t

a =
[
a1e

jφ1 a2e
jφ2 . . . aNejφN

]T
(2)

is the N -dimensional vector of narrowband disturbances

with complex amplitudes a1, a2, . . . , aN , initial phases

φ1, φ2, . . . , φN and known frequency ω0, v(t) denotes the

wideband disturbance and

KP(q
−1) =




K11(q
−1) K12(q

−1) . . . K1M (q−1)
...

...
. . .

...

KN1(q
−1) KN2(q

−1) . . . KNM (q−1)


 (3)

is the N × M transfer function matrix of the M -input, N -

output unknown linear stable plant.

In the sequel we will focus our attention on the overdeter-

mined case, N > M . We will seek for a minimum-variance

controller, i.e. controller allowing one to minimize the fol-

lowing cost function

J = lim
t→∞

E[yH(t)y(t)] . (4)

Note that, in contrast to our previous work [3], when N > M
perfect (or nearly perfect) cancellation is not possible – unless

the disturbance happens to lie in the image space of the plant.

This limitation holds even when the wideband noise is absent,

v(t) ≡ 0.

3. PROPOSED SOLUTION

3.1. Multivariate SONIC for the overdetermined case

The multivariate version of the SONIC controller, in its orig-

inal form, applies to the fully determined case only. It takes

the form [3]

z̃(t) = ejω0 [(1− cµ)z̃(t− 1)− cµy(t− 1)]

M̂(t) = M̂(t− 1)[I− αy(t)z̃H(t)]

d̂(t+ 1|t) = ejω0 [d̂(t|t− 1) + M̂(t)y(t)]

u(t) = −k−1
N d̂(t+ 1|t) , (5)

where d̂(t+ 1|t) denotes the one step ahead disturbance pre-

diction, kN is the complex gain of the nominal (assumed)

plant at the frequency ω0, kN = KN(e
−jω0), typically ob-

tained from a separate off-line plant identification experiment,

M̂(t) is the N × N matrix of complex estimation gains and

z̃(t) is the estimate of the gradient of the cost function.

The algorithm consists of two loops. The inner loop – the

last two equations of (5) – predicts the disturbance and, using

the nominal model kN, works out a suitable cancelling signal.

However, since the nominal plant may differ from the true

one, KN(e
−jω0) 6= KP(e

−jω0), the outer, self-optimization,

loop is necessary to guarantee proper performance. This loop

recursively adjusts the complex gain matrix M̂(t) so, as to: 1.

Compensate modeling errors, 2. Adjust the convergence rate

of the closed loop system to match the nonstationarity rate of

the plant and/or disturbance.

A naı̀ve extension of the control loop of (5) to the overde-

termined case could take the following form

d̂(t+ 1|t) = ejω0 [d̂(t|t− 1) + M̂(t)y(t)]

u(t) = −k
#
N d̂(t+ 1|t) , (6)

where M̂(t) ∈ CN×N and k
#
N ∈ CM×N denotes the pseu-

doinverse of kN. However, such a form of the control part

has one serious drawback. Under M̂(t) = M = const, it

holds that the control signal is governed by

u(t) = −KC(q
−1)y(t) , (7)

where the controller’s MIMO transfer function KC(q
−1)

takes the form

KC(q
−1) = [1− ejω0q−1]−1ejω0Geff

Geff = k
#
NM . (8)

Observe that the effective gain matrix Geff has the dimension

M ×N , while M is a larger N ×N matrix. This means that,

had (6) been used, the resulting adaptive controller would suf-

fer from overparametrization – there exist an infinite number

of matrices M which could yield the same Geff . This could

potentially lead to an undesirable behavior, e.g. bursting.



Fig. 1. Block diagram of the conventional extremum seeking

loop which uses sinusoidal probing signals.

Keeping this in mind, we will adopt the following control

loop

u(t) = ejω0 [u(t− 1)− Ĝ(t)y(t)] , (9)

where Ĝ(t) ∈ CM×N denotes the time varying gain matrix.

In the following subsections a new self-optimization loop

will be designed for (5). Similar to [6], it will be founded on

the extremum seeking approach, which offers a great deal of

robustness [7].

3.2. Extremum seeking using random probing signals

Fig. 1 depicts the conventional extremum seeking system. It

is assumed that the output of the process is the minimized cost

function J(t) = J [θ(t−1)], where θ(t) = [θ1 θ2 . . . θK ]T is

the vector of the adapted variables. To estimate the gradient of

the cost function, the ES loop injects sinusoidal perturbation

signals into θ(t) and applies special processing to the process

output. Finally, since J(t) is minimized, θ(t) is adjusted in

the direction opposite to the estimated gradient using the in-

egrator block [7].

The conventional approach has one drawback – in the

multivariate case the frequencies of the sinusoidal perturba-

tion signals must be chosen with a great deal of care. Since

the cost function is usually nonlinear in parameters, the sinu-

soidal perturbation signal will give rise to multiple spectral

components in J(t). The frequencies of these components

will be equal to various sums/differences of the probing sig-

nals frequencies. Unless all these spectral components are

well separated from each other, individual ES loops may in-

teract with each other, leading to unsatisfactory convergence.

This separation condition becomes increasingly more difficult

to satisfy when the number of adapted parameters becomes

large, as is the case of active noise/vibration control.

To cope with this issue we propose to employ a modified

version of the extremum seeking loop which uses complex

random probing signals.

Fig. 2. Block diagram of the modified extremum seeking loop

which employs complex random probing signals.

The block diagram of the modified approach is shown in

Fig. 2. The sinusoidal signals were replaced with a complex

random vector θ̃(t). The filter F (q−1) plays two roles. First,

it removes the DC component of J , which conveys no useful

information. Second, it filters out measurement noise. The

gradient of the cost function is sensed by means of correla-

tion processing of the filtered process output and the filtered

probing signal. Finally, the vector θ̄(t) is adapted in the di-

rection opposite to the estimated gradient.

3.3. Theoretical analysis

The proposed extremum seeking loop can be summarized us-

ing the following equations

θ̄(t) = θ̄(t− 1)− αθ̃f(t)Jf(t)

θ̃f(t) = F (q−1)θ̃(t− 1)

Jf (t) = F (q−1)J [θ(t− 1)]

θ(t) = θ̄(t) + θ̃(t) . (10)

Under slow adaptation, α ∼= 0, the stochastic averaging ap-

proach may be applied in the analysis of (10). Then (10) is

replaced with

θ̄(t) = θ̄(t− 1)− αE
[
θ̃f(t)Jf(t; θ̄(t− 1))

]
, (11)

where E[] denotes the expected value and Jf(t; θ̄(t − 1)) de-

notes the stationary stochastic process which settles down for

a constant value of θ̄(t).

To move ahead we need the following assumption:

(A1) The function J [θ(t − 1)] is differrentiable in the

complex-real (CR) sense [8] around θ̄(t− 1).

When (A1) holds, one is allowed to apply a Taylor-style

expansion of J [θ(t − 1)] around θ̄(t − 1), which takes the



form

J [θ(t− 1)] ∼= J [θ̄(t− 1)]+ θ̄
T(t− 1)

∂J

∂θ
+ θ̄

H(t− 1)
∂J

∂θ∗
,

(12)

where ∂J/∂θ, ∂J/∂θ∗, both evaluated at θ̄(t−1), are defined

as

∂J

∂θ
=

[
∂J

∂θ1

∂J

∂θ2
. . .

∂J

∂θK

]T

∂J

∂θ∗
=

[
∂J

∂θ∗1

∂J

∂θ∗2
. . .

∂J

∂θ∗K

]T
(13)

and

∂

∂θi
=

1

2

[
∂

∂Re θi
− j

∂

∂Im θi

]

∂

∂θ∗i
=

1

2

[
∂

∂Re θi
+ j

∂

∂Im θi

]
. (14)

Following [8], the steepest descent direction for adjusting

θ̄(t) is opposite to ∂J/∂θ∗. We will show that, under the

following additional assumption

(A2) The probing signal θ̃(t) is a zero mean, wide-sense

stationary circular Gaussian white noise with power spectral

density matrix

S
θ̃θ̃
(e−jω) =

∞∑

τ=−∞

E
[
θ̃(t)θ̃H(t− τ)

]
e−jωτ = S(e−jω)I

(15)

it holds that E
[
θ̃f(t)Jf(t; θ̄(t − 1))

]
is, up to a positive scale

factor, proportional to ∂J/∂θ∗.

Indeed, combining (10), (12) and (A2) leads to the fol-

lowing result

E
[
θ̃f(t)Jf(t; θ̄(t− 1))

]

= E
{
θ̃f(t)

[
F (q−1)J [θ̄(t− 1)] + θ̄

T
f (t)

∂J

∂θ
+ θ̄

H
f (t)

∂J

∂θ∗

]}

= 0 + E
[
θ̃f(t)θ̃

T
f (t)

]∂J
∂θ

+ E
[
θ̃f(t)θ̃

H
f (t)

] ∂J
∂θ∗

= E
[
θ̃f(t)θ̃

H
f (t)

] ∂J
∂θ∗

(16)

where the last transitions stems from circularity of θ̃(t). Fi-

nally, since

E
[
θ̃f(t)θ̃

H
f (t)

]
=

∫ 2π

ω=0

|F (e−jω)|2S
θ̃θ̃
(e−jω)dω

=

∫ 2π

ω=0

|F (e−jω)|2S(e−jω)Idω = CI ,

(17)

where C is a positive constant, one obtains that

E[θ̃f(t)Jf(t; θ̄(t− 1))] = C
∂J

∂θ∗
. (18)

This shows that the proposed adaptation mechanism correctly

estimates the optimal update direction.

Remark: Note that the assumption that the filter F (q−1)
has zero at DC, F (1) = 0 is not necessary. However, re-

moving the DC component of J [θ(t)] is beneficial, because it

reduces the variance of the term θ̃f(t)Jf(t; θ̄(t − 1)) consid-

erably.

4. SIMULATION RESULTS

The simulated control system configuration consists of two

loops. The inner loop is composed of the controller (9) and

the 2 input - 3 output, linear stable plant. Impulse responses

of the plant were obtained from a real world active vibration

control device and included features which can make con-

trol problem difficult, e.g. transport delay and poorly damped

pole/zero pairs. The disturbance signal took the form (2) with

a = [1 0.5 1]T and ω0 = 1.88 rad/Sa. The outer loop, based

on extremum seeking, adjusts the gain matrix Ĝ(t) of the in-

ner loop.

Note that the inner loop is of dynamic nature. This means

that any changes of Ĝ(t) take time to appear at the process

output. Furthermore, since the dynamics of the inner loop are

unknown (due to the plant itself being unknown), this delay

cannot be easily compensated. However, the following simple

solution was found to be very effective. To make the plant

appear more static, the ES loop operates with a slower rate

than the control loop. A single period of the ES loop, further

referred to as the ‘epoch’, consisted of T = 50 plant sampling

periods. The cost criterion takes the form

J [θ(n)] =

T−1∑

τ=0

yH(nT + τ)y(nT + τ) , (19)

where n denotes the epoch index.

The probing signal was generated as a complex circular

Gaussian white noise with covariance matrix equal to σ2I,

where σ = 0.005 ||Ĝ(t)||F and || · ||F denotes the Frobenius

norm.

The remaining settings for the ES loop were simple: α =
1, F (q−1) = (1− q−1)/(1− 0.9q−1).

To avoid erratic start, the control loop was initialized with

Ĝ(0) = 0.02k#
N . To make the simulation realistic, each ele-

ment of the nominal model matrix kN featured random mul-

tiplicative perturbation with standard deviation equal to 30%
of the corresponding element of the true plant’s complex gain

matrix kP.

During the first 2500 samples, the ES loop was disabled.

This period plays the role of the reference. Between t = 2501
and t = 3500, the probing signal was generated, but the up-

date was not performed. Finally, at t = 3501 the ES loop was

allowed to be fully operational.

Fig. 3 shows the evaluated values of the cost criterion

during the experiment. Observe the almost two-fold improve-

ment after the ES loop has been enabled.
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experiment.
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Fig. 4. Closed loop system outputs during the simulation ex-

periment.

The corresponding output signals are shown in Fig. 4.

Clearly, most of the improvement was found at the second

output. However, note that, with an exception of the transient

phase, the performance in the first output was not affected

adversely. Finally, a small improvement was also obtained at

the third output.

Fig. 5 depicts the closed loop system outputs when the

algorithm from [3], developed for the fully determined case,

was used in place of the proposed one. Obviously, in this case

only two of the three plant’s outputs could be used for the

control purposes. Observe that, while the disturbance appears

nearly canceled at these two outputs, its level is significantly

elevated at the third one. This means that the control strategy

was not successful, because the wavefield was cancelled only

locally. On the other hand, the proposed solution yields a

better overall performance, because a “global” improvement

was reached.
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