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ABSTRACT
In this paper we present a speech representation based on the
Linear Predictive Coding of the Zero Phase version of the sig-
nal (ZP-LPC) and its robustness in presence of additive noise
for robust formant estimation. Two representations are pro-
posed for using in the frequency candidate proposition stage
of the formant tracking algorithm: 1) the roots of ZP-LPC and
2) the peaks of its group delay function (GDF). Both of them
are studied and evaluated in noisy environments with a syn-
thetic dataset to demonstrate their robustness. Proposed rep-
resentations are then used in a formant tracking experiment
with a speech database. A beam search algorithm is used for
selecting the best candidates as formant. Results show that
our method outperforms related techniques in noisy test con-
figurations and is a good fit for use in applications that have
to work in noisy environments.

Index Terms— zero phase, linear predictive coding,
group delay function, formant tracking.

1. INTRODUCTION

Formant tracking has been of interest to the scientific com-
munity for a long time mainly due to its application in var-
ious areas of speech processing. Formants have been used
in speech phoneme recognition and speech recognition [1],
speech synthesis and as discriminative features for speaker
recognition [2]. In real life, speech processing applications
need to perform in noisy conditions. Therefore, the current
challenge lies in developing algorithms that can achieve ac-
curacy in the presence of noise.

Traditionally, formant candidates are obtained by solving
the polynomial roots of Linear Predictive Coding (LPC) [3]
of the speech signal. LPC is able to detect the poles in the
estimated spectral envelope with great accuracy. However,
under noisy conditions it is difficult for LPC to obtain the
correct solution since the noise signal has it own roots which
are different from the roots of the signal and both of these
roots combine nonlinearly to give rise to new roots in Region
of Convergence (ROC). For broadband stationary noise, it is
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less likely that the roots of the noise lie where the formants are
located, close to unit circle. On the other hand, narrow band
noise can produce roots that are close to unit circle. These
roots can be confused with formants or may combine with
formants to produce new shifted roots.

Previous works have addressed this issue of robustness to
noise using autocorrelation, with some interesting findings.
McGinn and Johnson [4] showed that in the presence of Ad-
ditive White Gaussian Noise (AWGN) the autocorrelation se-
quence is more robust compared to the noisy signal in pre-
serving the pole positions of the original (non-noisy) signal.
Later, Mansour and Juang [5] generalized the autocorrelation
method to a speech production model and showed that simi-
lar properties hold under wide band noise. They proposed a
spectral representation of all pole sequences called Short-time
Modified Coherence (SMC) and applied it to the problem of
isolated word recognition. Similarly, other authors [6], [7]
have used autocorrelation sequence for representing speech in
a noisy speech recognition system. All of these works show
that in the context of formant tracking, the limitations of LPC
in noisy environments can be overcome by taking advantage
of robustness and pole-preserving properties of the autocor-
relation domain. To this end, we look into Zero Phase (ZP)
representation as a type of transformation in autocorrelation
domain. ZP has previously been used for wide-band noise re-
duction [8] and applying Chirp Z-transform combined with
Group Delay Function (GDF) for speech representation in
speech recognition [9] [10] and glottal flow estimation [11].
GDF have been used in formant tracking too [12], [13], [14]
with interesting results.

In this work, we propose two new representations based
on ZP-LPC: a phase spectral representation using GDF and a
roots representation. Both representations are then evaluated
in terms of robustness for the problem under consideration:
formant tracking for obtaining robust formant candidates in
noisy environments. This work presents the continuation of
our previous works [15], [16].

The paper is organized as follows: Section 2 presents
the proposed representations along with mathematical back-
ground and motivation for using ZP. Some experiments on
synthetic datasets are also presented in this section for per-
formance evaluation of LPC and ZP-LPC. In Section 3, the



proposed representations are used in a formant tracking task
and experiments are presented in both noisy and clean condi-
tions. Finally Section 4 provides discussions and conclusions.

2. ZERO PHASE VERSION OF THE SIGNAL

First we introduce the zero phase version of the signal. Con-
sider a speech production model with an all pole filter that
models the vocal tract. The output of the model is the speech
signal x(n) and the resonance frequencies of the vocal tract
are the speech formants.

The ZP version xzp(n) of the signal x(n) is computed
by first taking the absolute value of the Fourier Transform
presentation of the signal and setting the phase to zero (effec-
tively removing it). Let the Fourier Transform [17] coefficient
(X(ejw)) of x(n) be given by:

X(ejw) = |X(ejw)|ej∠X(ejw) (1)

The inverse Fourier transform of the signal magnitude repre-
sents then the zero phase signal in the time domain. Mathe-
matically, the ZP version of x(n) is given by:

xzp(n) =
1

2π

∫ π

−π
|X(ejw)|ejwndw (2)

2.1. Pole preservation and robustness

The autocorrelation sequence is more robust to wide band
noise than the original signal sequence. Previous works [4],
[5] demostrated this by analyzing the Signal to Noise Ratio
(SNR) variation in the autocorrelation of a noisy signal com-
pare that of the original signal. A function is considered pole
preserving if applying to an all pole sequence resulting in an-
other sequence with the same poles.

2.2. From autocorrelation to Zero Phase sequence

As it is well known the autocorrelation sequence is an exam-
ple of zero phase signal. So, the zero phase sequence could
be generalized as in equation (3):

xzp(n) = IDFT (|X(ejw)|β) (3)

where β is an integer number. If β = 2, we have the autocor-
relation function.

ZP has the same properties of robustness and pole-
preservation as the autocorrelation since for real sequences
the square root just changes the numerical value of the mag-
nitude but the roots remain unaffected. Therefore, the fre-
quency response of ZP will be the square root of the power
spectral density and the dynamic range will be less. This
is an advantage in the context of formant tracking because
in the autocorrelation domain (|X(ejw)|2) the pitch is very
high, specially for female voices. Then LPC estimation can
choose pitch peaks instead formants peaks. Then the smaller

dynamic range allow more pronounced pitch and formant in-
teraction [5].

2.3. ZP-LPC representation

As illustrated in the previous section, ZP can help prevent
the shifting of roots due to noise. At the same time, LPC
is very good at capturing the formant structure. Therefore
we propose a method that takes the best from both. We use
the ZP representation for making the signal robust to broad-
band noise while still preserving the poles, followed by LPC
for formant tracking. From this representation, there are two
ways of obtaining formant candidates: 1) by finding the peaks
of the spectrum or 2) by calculating the roots of the prediction
model. For the spectral representation, we use phase spectrum
with its GDF since it provides a better resolution between for-
mants as compared to magnitude spectrum. The steps from
the raw noisy signal to extraction of format candidate are:
1. Segment speech signal x(n) with framesize = 49 ms and

overlap = 10 ms

2. Pre-emphasize each segment with a high pass filter of the
form: 1 − 0.7z−1 and windowing with a Blackman win-
dow of 49 ms

3. Compute ZP using the procedure in equation (2)

4. Compute the LPC over xzp(n) to find the predictor coef-
ficients

5. Obtain the roots of polynomial estimated in step 4

6. Compute the GDF [17] from parameters obtained in 4

2.4. Effects on Spectral representation: LPC vs ZP-LPC

This section investigates the observed effects of noise on the
spectral representation using LPC and the proposed ZP-LPC.
We evaluate this by comparing the variation in the GDF of
LPC as well as ZP-LPC for a speech signal corrupted with
additive white noise at SNR = 0, 5, 15, 25 dB. The resulting
GDF are given in Fig. 1. For reference, the LPC and ZP-LPC
computed for the clean signal are also given (in blue) in Fig.
1.

The figure shows that the GDF calculated with LPC has
greater variation than the one computed with ZP-LPC. At
SNR of 5 db, LPC already shows high variation while ZP-
LPC is comparatively stable. As the signal degrades, both
representation show variations due to added noise but ZP-
LPC is still more stable compared to LPC at every noise level.

2.5. Effects on Roots: LPC vs ZP-LPC

This section evaluates how noise affects the roots estimation.
Evaluation is carried out by comparing the mean distance to
root for both LPC and ZP-LPC with a known clean reference.

In order to carry out the evaluation, 150 instances of white
noise signal were generated and filtered with an all-pole fil-
ter with 3 roots located at 500, 1500 and 2500 Hz, imitating
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Fig. 1. Group delay spectrum of the LPC and ZP-LPC for a
speech signal corrupted with 150 instances of additive white
noise at SNR = 0, 5, 15, 25 dB.

the vocal tract. These serve as the reference signals. To each
such reference signal three types of additive noise (station-
ary broadband noise, bandpass noise centered at 1500 Hz and
lowpass pink noise) at 5 different SNR levels (0-20 with steps
of 5 db) were added, simulating very noise to almost clean
environments. This gave us 15 different noise configuration
for each reference signal. For each signal in a given config-
uration, the roots for LPC and ZP-LPC were found and the
distance to the root of the reference signal on the z-plane were
computed. The Fig. 2 shows the mean for each configuration.
A 12th order filter was used in both cases for the estimation
of the three roots.
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Fig. 2. Mean distances between reference roots and signal
roots in varying noise conditions (LPC: blue solid line, ZP-
LPC: red dotted line).

As can be seen from Fig. 2, for lowpass and broadband
noise ZP-LPC outperforms LPC especially in regions of high

noise (SNR < 10 db). In the case for bandpass noise, Fig. 2
shows the same performance for high noise regions (SNR< 5
dB). This demonstrates that this technique is as good as LPC
in case of narrow band noise and can replace LPC without any
loss of performance.

3. FORMANT TRACKING EXPERIMENTS

Having established the performance of the proposed method,
we now apply it to our application of interest i.e. formant
tracking. The experiments were carried out with the VTR-
database [18]. For measuring the performance, absolute error
between estimated and labeled formants for each signal was
computed. Then, in order to capture a representative measure
of dataset error avoiding outliers, the median of all the abso-
lute errors were obtained (Median of Absolute Errors: MeAE)
in voiced frames. For that purpose the pitch extractor ESPS
algorithm from Snack toolkit 1 was used.

The tests were conducted in two stages: first with the
clean signals from the database for selecting the ZP-LPC con-
figuration i.e whether GDF performs better on real signals or
finding the roots. In the second stage, we carry out the task of
formant tracking with noise added to the clean signals. The
noise types used were: stationary white noise and a type of
non-stationary noise consisting of speech called babble noise,
both of them from NOISEX 92 [19], pseudo-stationary street
noise from AURORA 2 database [20], nonstationary music
noise from a highly harmonic segment of the song November
Rain of Guns and Roses band. All noise types were added at
SNRs from -15 to 20 dB, making a total of 32 noise configu-
rations. In order to compare the formant candidate stage we
use our previous approach based on LPC and beam-searching
algorithm (LPCiber) [16]. In that previous work LPCiber
reached the best performance compared with known formant
tracking methods: Wavesurfer from Snack Toolkit, Welling-
Ney [21] and Mustafa [22]. Then we inserted the new formant
candidate proposals, ZP-LPC with GDF as well as roots, in
that formant tracking system for using the same formant se-
lection algorithm (beam-search).

3.1. Results and discussions

In the following, results for the first three manually labeled
formants are presented. The database does not label the fourth
formant and therefore it can not be considered ground truth.
The results for formant tracking with both the proposed meth-
ods on clean signals in MeAE(Hz) ar in Table 1.

It can be seen the ZP-LPC-roots outperforms the GDF
representation in every case (lower MeAE for all formants).
GDF exhibits larger errors because in presence of small band-
width poles mainly in frames with two very close formants,
GDF is not able to separate them despite its high resolution
properties. It ends up detecting a mixed peak for both the

1Snack toolkit: http://www.speech.kth.se/wavesurfer



Table 1. MeAE(Hz) for formant tracking in clean database
using both representations from the proposal ZP-LPC: GDF
(ZP-LPC-GDF) and roots (ZP-LPC-roots).

Methods F1 F2 F3
ZP-LPC-GDF 21.4129 50.4828 75.5479
ZP-LPC-roots 17.0628 31.2180 52.1793

formants. Roots on the other hand are able to handle this par-
ticular case very well.

SPECTROGRAM

 

Time (seconds)

F(KHz)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

4652 Hz

2802 Hz

1083 Hz

762 Hz

ROOTS

759 Hz
946 Hz

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real PartF(KHz)

Imag Part

1881 Hz2999 Hz

3709 Hz

4572 Hz

0 0.5
1 1.5

2 2.5
3

3039 Hz

GDF

1902 Hz

4627Hz

3745 Hz

941 Hz

3.5
4 4.5

5  
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.12

0.10

0.14

0.16

Fig. 3. Spectrogram of a signal segment labeled with the
ground truth and formant candidates from ZP-LPC-GDF and
ZP-LPC-roots. Green figures forms are for signalize which
formant candidate match with the ground truth formant.

An example of this case is shown in Fig. 3. There we
show the spectrogram of a VTRdatabase signal segment fo-
cusing on a frame with F1 and F2 very close and labeled
with the ground truth, plus the formant candidates obtained
from ZP-LPC-GDF and ZP-LPC-roots in that frame. Green
marks there signify which formant candidate match with the
the ground truth. ZP-LPC-GDF proposal is mistaken in the
first candidate (it is a mixture of the real F1 and F2), ZP-
LPC-roots achieves two right candidates for F1 and F2. In
noisy environments, this situation is made even worse by new
peaks formed due to the added noise which can be mistaken
to be a formant. Due to the better performance of ZP-LPC
with roots, we choose this configuration for the final set of
experiments.

The main findings of this work are presented in Fig. 4.
It shows a comparison of formant tracking algorithms with
the noise configurations discussed earlier. It can be seen that
the proposed method (ZP-LPC) achieves significant improve-
ment over the previous approach (LPCiber). However the be-
havior of ZP-LPC is affected by the type of noise. Notice that
the maximum MeAE for the proposal is around 100 Hz, while
LPC reaches up to 240 Hz. Considering the overall results,
ZP-LPC is a better algorithm.

For stationary white noise ZP-LPC-roots always has bet-
ter performance compared to LPCiber. The most notable is
the improved achieved in the third formant (F3) of about 140
Hz. This is in agreement with the theoretical findings of
McGinn and Johnson [4] (see Section 1). Similarly, for nar-
row band noises (street and music) ZP-LPC outperforming
LPC. These results indicate that robust property of autocorre-

lation sequence holds in narrow band noise as well.
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Fig. 4. Median Absolute Error (MeAE) in Hz for the formants
proposed by LPC, ZP-LPC-roots versus the reference in VTR-
Database.

Finally for the babble noise the proposal has a slightly
lower performance in F1 for low SNR. Notice that babble
noise is composed of speech, thus there are other formants
frequencies acting as several narrow band noises interfering
with the target roots. Under such conditions, the task of find-
ing the correct formants is increasingly complex. Despite that
the proposed method achieves improved performance for F2
and F3.

4. CONCLUSIONS

In this paper the study of a spectral speech representation
based on the ZP transformation of the signal was presented.
The proposal was applied to the candidates proposal stage of
a formant tracking system in order to increase its robustness.
The proposed approach offers interesting results. For station-
ary white noise the proposed ZP-LPC outperforms LPC rep-
resentation. Performace is improved for the narrow band non-
stationary noise case as well.

This work together with the previously mentioned [5] [6]
have demonstrated the value of the autocorrelation domain
operations in order to achieve robustness. However in previ-
ous works they have been used for handling stationary noises.
Results in section 3 showed how this transformation provide
robustness for nonstationary noises too. This fact makes ZP
transformation a useful tool for noise compensation meth-
ods in cases when the type of noise is unknown. Finally we
want to point out that the proposed representation is not use-
ful exclusively for formant tracking task, it can also be used
as robust features in another speech processing task, such as
speaker or speech recognition.
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