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ABSTRACT
Most of the available frequency estimation methods are re-
stricted for the application to signals without a bias or a carrier
signal. For offline analysis of a signal an existing carrier may
be determined and eliminated. However, in the case of online
computations the carrier is not accurately known a priori in
general. An error in the carrier signal directly affects the ac-
curacy of the subsequent instantaneous frequency estimation
approach. This article focusses on the online instantaneous
frequency estimation of non-stationary signals based on the
empirical mode decomposition scheme. Especially Hermite
spline interpolation of samples for empirical mode decompo-
sition is addressed. Hermite splines enables the definition of
enhanced boundary conditions and leads to an effective on-
line instantaneous frequency estimation approach. Through-
out the article algorithmic details are examined by a theoreti-
cal example.

Index Terms— EMD, online, spline interpolation, bound-
ary condition

1. INTRODUCTION

In common, the frequency content of a non-stationary sig-
nal at hand is determined by classical signal processing ap-
proaches. The well known representatives are the short time
Fourier transformation (STFT) or the Wavelet transformation
(WT). As disadvantageous fact, both approaches lead to a bad
resolution in the time domain or in the frequency domain: the
time-frequency uncertainty principle by Heisenberg, makes it
difficult to assign a frequency value to a given point in time.
In 1998, Huang proposed a data-driven method, the empiri-
cal mode decomposition (EMD), which decomposes a signal
into several components with special properties [1,2]. Subse-
quent application of the Hilbert transformation to the resulting
mode leads to an analytical signal representation and a very
accurate instantaneous frequency computation - also in time.
This approach is referred to as Hilbert-Huang transformation
(HHT) and outperforms classical signal processing schemes
regarding the achievable resolution in time and frequency do-
main [1, 3].

Because of the limited observation length of the signal and
numerical effects instead of the Hilbert transformation other
approaches are utilized to determine the instantaneous fre-
quency. For example, in [4] an auto-regressive (AR) esti-
mation approach is used and some algorithmic details con-
cerning the EMD are discussed. This paper is devoted to ad-
dress algorithmic issues regarding an online version of the
EMD. The proposed improvements solve some critical prob-
lems and lead to a promising approach for online instanta-
neous frequency estimation.
Section 2 presents a representative online frequency estima-
tion method. The EMD scheme and its problems are dis-
cussed in Section 3. Section 4 is devoted to well-known on-
line computation problems and the application of Hermite
spline interpolation is proposed. In Section 5, the perfor-
mance improvement regarding online EMD as well as online
frequency estimation is demonstrated.

2. INSTANTANEOUS FREQUENCY ESTIMATION

As an example for the online estimation of the instantaneous
frequency (IF) the Discrete time Energy Separation Algorithm
(DESA) is used. This scheme is based on the Teager Kaiser
energy operator, which is originated on the observations of
Teager in 1980 and was revised by Kaiser in 1990 [5]:

Ψ {y(t)} = ẏ(t)2 − y(t)ÿ(t) (1)

The time continuously frequency estimation based on the en-
ergy operator is outlined in (2). By this equation the affect
of a constant offset in the analysed signal can be illustrated.
There is no impact of the bias term in the numerator because
of the derivation. Otherwise, the offset is not eliminated in
the denominator, which causes a frequency estimation error.

ω(t) =

√
Ψ {ẏ(t)}
Ψ {y(t)}

(2)

For a discrete scheme the estimation of the frequency is de-
fined as follows [5, 6]:

ωk ≈ arccos

(
1− Ψ {yk − yk−1}

2Ψ {yk}

)
(3)



3. EMPIRICAL MODE DECOMPOSITION

The empirical mode decomposition (EMD) was developed by
Huang to analyse non-stationary signals in the time-domain.
It is solely defined by a non-linear iterative algorithm instead
of mathematical formulas and separates a non-stationary
signal into several components [1, 2]. The sum of the re-
sulting components represents the original signal. The ex-
tracted components are so-called intrinsic mode functions
(modes), which represent zero-mean AM-FM components,
and a residuum, i.e. a trend or carrier. Each intrinsic mode
function has two fundamental properties:
• The difference of the number of zero crossings and the

number of extrema must be less than or equal to one

• The mean of the envelope along the maxima and the en-
velope along the minima must be zero at each time step

The most important fact is, that each of the individual modes
is available without any carrier and carrier sensible instan-
taneous frequency estimation techniques may be applied di-
rectly to the extracted modes.

3.1. The EMD algorithm

The algorithm consists of two loops of iterations, where the
nested iteration is referred to as sifting process [1, 2]. If a
signal h〈p,q〉(t) with the indices q and p is considered, the
index q = 1, ..., Q denotes the sifting process iteration and
p = 1, ..., P indicates the iteration in a specific sifting op-
eration. At the beginning of each sifting process q the sig-
nal h〈1,q〉(t) is set to an intermediate available signal r〈q〉(t).
In the initial step, the original signal y(t) is represented by
r〈1〉(t). During processing the following steps are performed:

1. Detection of the minima h
〈p,q〉
m,i (t) and maxima values

h
〈p,q〉
M,i (t) of the signal h〈p,q〉(t)

2. Determine the envelope of the maxima h〈p,q〉M (t) and the
envelope of the minima h〈p,q〉m (t)

3. Calculate the mean m〈p,q〉(t) of the envelopes:

m〈p,q〉(t) =
h
〈p,q〉
M (t) + h

〈p,q〉
m (t)

2
(4)

4. Determine the difference between signal and mean:

h〈p+1,q〉(t) = h〈p,q〉(t)−m〈p,q〉(t) (5)

The steps 1 to 4 are repeated until the signal h〈p,q〉(t) con-
firms the IMF’s criterions mentioned above. In this case this
sifting process is finished and the result h〈p,q〉(t) represents
an intrinsic mode:

cq(t) = h〈P,q〉(t) = r<q> −
P∑

p=1

m<p,q>(t) (6)

The signal for the next sifting process is calculated as follows:

r〈q+1〉(t) = r〈q〉(t)− h〈P,q〉(t) (7)

The EMD process stops if no additional mode can be ex-
tracted. In this case, the signal r〈q〉(t) has monotonic behav-
ior and represents the trend. The sum of all extracted modes
and the resulting trend represents the original signal y(t) and
thus, the EMD is independent of the behavior of the decom-
position algorithm. The extracted modes themselves depend
on the detection of the extrema, the kind of interpolation used
to calculate the envelopes and boundary conditions [1, 2, 4].
The common boundaries are discussed subsequently.
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(e) Skew symmetric mirroring

Fig. 1. Envelopes by using different boundary conditions



3.2. Boundary conditions

The envelopes are defined by the minima and maxima values
and represent an interpolation between the detected extrema.
As disadvantageous fact, the behavior of the interpolated en-
velopes is directly affected by the boundary condition. Es-
pecially this phenomenon has (huge) influence for short sig-
nal observation windows where only a small number of ex-
trema is available. For example, Fig. 1 depicts the influence
on the envelopes for different boundary conditions. Different
boundary conditions are illustrated in Fig. 1a, 1b and 1c. As
expected, there is a significant affect regarding the upper and
the lower envelope. If there are extrema near the observation
window edges or large offsets exist and the boundary is set to
zero problems occur. Application of symmetric mirroring and
skew symmetric mirroring (Fig. 1d and 1e) of the extrema at
the edges of the observation window are proposed in [2,4]. By
the skew mirrored approach minima and maxima alternately
occurs and leads to an improved behaviour near the interval
limits.

4. BLOCKWISE EMD

The previously conducted considerations are mainly con-
nected to an offline analysis of a given signal. In this case,
typically a huge number of samples is available, the boundary
conditions affect only the edges at the observation window
and the number of iterations performed is not critical accord-
ing to the required processing time. However, for an online
or realtime application during a measurement or simulation
process the common EMD needs to be extended because of
several algorithmic drawbacks. Basically, for online appli-
cation, only a small window is analysed. The dependency
of the EMD on extrema suggests, that a blockwise or win-
dowed EMD is calculated with each new occurring maxima
or minima. Furthermore, the observation window is moved
with each extrema. For an online application - meaning a
blockwise signal analysis - of the EMD additional problems
occur [2, 4]:

• New extrema influence past intervals of extracted modes

• Discontinuities at the edges of the blockwise extracted
modes occur

The discontinuities result due to the use of common bound-
aries, because the properties of two blockwise calculated
modes do not match at the edges in general. To solve the
listed problems the used interpolation scheme is addressed.
Hermite splines allow the definition of enhanced boundary
conditions, which enables an important improvement of the
online EMD algorithm. In addition to prevent the disconti-
nuities new boundaries based on Hermite spline interpolation
are proposed.
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(a) Cubic splines
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(b) Hermite splines

Fig. 2. Difference between cubic splines and Hermite splines

4.1. Hermite spline interpolation

Cubic splines interpolate a third order polynomial between
adjacent samples. In addition to the values of the two splines
at each sample point also the first and second derivation have
to match. Thus, a new sample changes the interpolation over
wide past intervals. This fact restricts the use of ordinary
splines regarding online EMD. To avoid this effect Hermite
splines are proposed for interpolation purposes [7]. Thereby,
only the local derivation is of interest. The first derivation is
fixed by the adjacent samples and enables a local considera-
tion of the splines. This is a necessary (local) condition for an
efficient online application of the EMD. Basically, Hermite
splines are defined by

yH(t) =
2Tkτ

2 − 2τ3

T 3
k

yk+1 +
T 3
k − 3Tkτ

2 + 2τ3

T 3
k

yk + · · ·

+
τ2(τ − Tk)

T 2
k

dk+1 +
τ(τ − Tk)2

T 2
k

dk

where dk represents the slope of the spline, Tk = tk+1 −
tk and τ = t − tk, see [8]. Fig. 2 illustrates the difference
between cubic and Hermite spline interpolation. Interpolated
curves are depicted based on five and six samples and allows
a comparison of both approaches. Especially, in the case of
using Hermite splines, the interpolated singal is only affected
in the interval between the last two samples y4 and y5.

4.2. Boundary conditions for blockwise EMD

Concerning online (blockwise) EMD signal processing it is
necessary to know the behavior on the left boundary to en-
sure that the mode signal has a steadily behavior. Therefore,
the values and the derivations of the modes cq must agree at
the junction tj , i.e. the left edge of the analysed block (see



Fig.3). The relation between the mode cq and the envelopes
h<p,q>
m and h<p,q>

M in (4) and (6) shows that if the mode is
continuous, the envelopes must also occupy continuity at the
observation limit tj . Further, the number of sifting iterations
is different for the extraction of the mode in subsequent block
windows. Thus it is not expedient to define the boundaries of
the envelops for each specific iteration step.
In accordance to (6) the intrinsic mode function is represented
by:

cq(t) = r<q> −
(1

2

P∑
p=1

h<p,q>
M︸ ︷︷ ︸

HM (t)

+
1

2

P∑
p=1

h<p,q>
m︸ ︷︷ ︸

Hm(t)

)
(8)

Instead of the properties of each envelope h<p,q>
m and h<p,q>

M

during a sifting process, the sum of the upper envelopes
HM (t) and the sum of the lower envelopes Hm(t) are con-
sidered. The behavior of Hm(t) and HM (t) of the prior
observation window are used to describe the properties of
the new mode at the observation limit tj . In the first sifting
iteration the values of the upper and lower envelope at the
boundary are defined via

yM,0 = HM (tj) and ym,0 = Hm(tj) (9)

and the slopes at the left boundary are defined by:

ẏM,0 =
d

dt
HM (t)

∣∣∣
t=tj

ẏm,0 =
d

dt
Hm(t)

∣∣∣
t=tj

(10)

After the first iteration the new calculated mode h<p+1,q>(t)
has the same properties as the prior mode cq(t) at the ob-
servation limit tj . So there is no discontinuity at the junc-
tion. To ensure, that the following siftings have no impact to
the boundary the values yM,0, ym,0 and the derivations ẏM,0,
ẏm,0 are set to zero for all following iterations.
These conditions for the left boundary ensure, that the modes
cp and the trend r<p> are continuous at the observation limit
tj . With this enhanced boundary conditions, the number of
iterations may vary with individual blocks, past modes are
not affected due to new extrema, less data is to store and no
discontinuities occur.

4.3. Blockwise EMD algorithm

Hermite splines and the proposed boundary conditions allow
to calculate a mode blockwise with each upcoming extrema,
which is continuous and independent of further samples. This
section gives a description of the observation window and its
movements.
The blockwise EMD needs at least five extremes to calculate
a piece of the mode between at least the last two extremes.
Figure 3 shows an example of the observation window at the
first sifting iteration and the resulting mode cq(t). The pro-
posed boundary conditions (9,10) are used to describe the left
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Fig. 3. Enhanced boudary conditions

edge of the window. At the time ti a new extrema ym,2 ap-
pears and allows the final description of the lower envelope
between ym,0 and ym,1. The upper envelope is fixed between
tj and tj+1 by its maxima yM,0 and yM,1 The resulting piece
of the mode, which is independent of new occurring samples,
is located between the two last extremes at tj and tj+1. Af-
ter the calculation the observation window shrinks from tj to
tj+1 and raises again with each new sample till a next extrema
appears.
Figure 3 b shows the blockwise calculated mode with a delay
of the last four extrema. However, for an online application
- meaning an estimation of the instantaneous frequency with
each new sample, an estimation of the mode cq(t) is neces-
sary. Therefore the extrapolation of the trend r<q>(t) may
be appropriate. The extrapolated trend r<q>(t) is subtracted
from the signal y(t) to estimate the mode cq(t). With each
new extrema the estimation of the mode and the trend are up-
dated by the blockwise EMD calculation.

5. EXAMPLE

As proposed, Hermite splines for interpolation of extrema and
enhanced boundary conditions are used to decompose a syn-
thetical signal. After the online decomposition of the sig-
nal the resulting mode is analysed by a frequency estimation
method (DESA) based on the Teager Kaiser energy operator
introduced in Section 2. The analysed signal is defined as
follows:

y(t) =


1.0 sin(0.628t) + 1 0 ≤ t < 10
2.0 sin(0.418t) + 1 10 ≤ t < 25
1.5 sin(0.418t) + 1 25 ≤ t < 40
1.0 sin(0.628t) + 1 40 ≤ t < 50
1.5 sin(0.628t) + 1 50 ≤ t < 60

(11)
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Fig. 4. Application of online EMD and IF estimation

It represents a non-stationary signal with frequency and/or
amplitude modulated components as well as a time-varying
tone or carrier. The example was mainly chosen simply to
put the focus on the discontinuities. This signal was used
throughout the article and is illustrated in Fig. 4a. For com-
parison purposes the input signal is decomposed online using
the blockwise EMD scheme with commonly used and im-
proved boundary conditions using Hermite spline interpola-
tion. Fig. 4b shows the resulting first IMF for both online de-
composition schemes. As expected, due to enhanced bound-
ary conditions (9, 10), the proposed version based on Hermite
splines eliminates the discontinuities at rear block edges (lo-
cated at extrema). The resulting effects regarding instanta-
neous frequency estimation are demonstrated in Fig. 4c. Fre-
quency estimation based on the common decompositon ap-
proach (dashed) leads to artificially introduced artifacts. The
herein proposed approach identifies the inherent frequencies
accurately with only high frequency componentes at points in
time where the amplitude or the frequency is switched, see
(11).

6. CONCLUSION

The accuracy of instantaneous frequency estimation of non-
stationary signals is most often affected by a inherent tone sig-
nal. This effect is demonstrated by a fast four-sample energy-

based frequency estimation algorithm. However, a proposed
online version of the EMD scheme was addressed to extract
zero-mean AM/FM modes. To eliminate disturbing discon-
tinuities in the individual modes enhanced boundary condi-
tions are introduced based on Hermite splines. The benefits
are less data for storage, a varying number of sifting-iterations
for each block and an improved accuracy regarding instanta-
neous frequency estimation.
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