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ABSTRACT

Measurements of a complex scalar linear Gauss-Markov pro-

cess are sent over a fading channel. The fading channel is

modeled as independent and identically distributed complex

normal random variables with known realization at the de-

coder. The optimal estimator at the decoder is the Kalman

filter with random instantaneous gain and error variance. To

evaluate the quality of estimation at the receiver, the probabil-

ity distribution function of the instantaneous estimation error

variance and its outage probability are of interest. For the

special case of the Rayleigh fading channels, upper and lower

bounds for the outage probability are derived which provide

insight and simple means for design purposes.

Index Terms— Estimation Over Fading Channels, Kalman

Filter, Outage Probability

1. INTRODUCTION

Low or zero delay transmission of measurements of a dy-

namic process to a remote controller/observer has a signifi-

cant role in applications such as network monitoring and con-

trol. Generally in real-time signal processing, it is required

that the observed signals should be sent over a communica-

tion channel without delay. Due to this tight delay require-

ment, high-performance block-wise coding schemes which

incur unacceptable delay should be avoided. For wireless fad-

ing channels, it is possible to send the measurements directly

over the channel using uncoded transmission and then per-

form estimation on the channel outputs at the receiver. Anal-

ysis of the signal estimation quality is therefore necessary to

ensure satisfactory performance.

If the dynamic process follows a linear Gauss-Markov

model and the channel realization is independent of the ran-

domness of the process, the optimal estimator is the Kalman

filter ( [1–3]). Due to the randomness of the fading channel,

the Kalman filter is random and does not necessarily converge

to a constant value. The instantaneous prediction and estima-

tion error covariance matrices, which are measures of quality

within the Kalman filter framework, are then random. It is

known that the prediction error covariance matrices develop

through a well-known second-order random Riccati equation

(RRE). The estimation error covariance matrix also follows

the prediction error covariance matrix by simple algebraic op-

erations. Studying the RRE is one way to characterize statis-

tical properties of the prediction error and estimation error

covariance. In that line, the exponential stability of the RRE

was considered in [4]. The peak covariance stability of the

RRE along with boundedness of the error covariance matrix

in the usual sense are considered in [5]. Probabilistic con-

vergence of the sequence of random covariance matrices for

Kalman filtering over erasure channels was studied in [6]. The

stationary distributions for infinitely large random matrices

for Riccati and Lyapunov equations was also studied in [7].

Bounds on the mean of the instantaneous covariance matrices

in the RRE formulation are also obtained in [8].

In this paper we study the estimation error quality when

measurements of a scalar Gauss-Markov signal are sent over

a fading channel when channel realizations are assumed i.i.d.

and known at the receiver only at the time of the observa-

tion. The optimum MMSE filter, i.e. the Kalman filter is then

random and the exact value of the instantaneous estimation

error variance (IEV) cannot be obtained in advance. In the

spirit of outage analysis for fading channels, we incorporate

estimation error outage as a criterion for estimation perfor-

mance assessment. In other words, we study the event where

the IEV exceeds a certain threshold. This measure could for

instance be a design parameter from a control or real time

monitoring system. The notion of end to end average dis-

tortion measure for uncoded transmission over fading chan-

nels was first introduced in [9] and further studied in [10–12].

Considering settings where delay is of concern, the distortion

outage probability for MIMO block fading channels is con-

sidered in [13], where a transmitter informed bound for dis-

tortion outage probability is studied and it is shown that the

source-channel separation achieves the same bound.

In this work and for Kalman estimation over fading chan-

nel, we try to find the outage probability and characterize how

it is related to average channel quality under certain channel



statistics. Due to lack of previous theory for finite dimension

vector models, the scalar signal model was chosen as a start-

ing point. We show that in this case, the outage measure takes

a simple form for a certain range of outage thresholds, which

we believe is insightful for design purposes and further de-

velopment. We show that using i.i.d channel assumption, the

first order pdf of the IEV may be obtained through a recursive

integral equation. Using that, we obtain the outage probabil-

ity for a certain range of thresholds corresponding to higher

outage values. We show that for the Rayleigh fading chan-

nel model, the outage probability simplifies to a closed-form

formula. For such channels, we also provide upper and lower

bounds for the outage probability to further simplify evalua-

tion of estimation accuracy.

2. SYSTEM MODEL AND PROBLEM DEFINITION

Consider the following scalar complex Gauss-Markov model.

x(n) = ρx(n− 1) + u(n), n ≥ 1, x(0) ∼ CN (0,M(0))

y(n) = h(n)x(n) + v(n) (1)

with u(n) and v(n) are white circularly symmetric complex

Gaussian random variables with variances σ2
u and σ2

v , respec-

tively. Consider h(n) to be a circularly symmetric complex

Gaussian random variable. Note that we may call ρ as the

correlation coefficient for the process x(n). All the computa-

tions are performed in discrete time, and the communication

method may be called uncoded analog [10]. The channel is

also assumed known at the decoder, while being a realization

of the random variable with a known probability density func-

tion. The objective at the decoder is optimal estimation of the

signal, given the channel outputs.

Given the previous assumptions, and with h(n) inde-

pendent from u(n) and v(n), the optimal MMSE estimator

of x(n) based on the observations y(n) is the well-known

Kalman filter with the following prediction and estimation

steps adapted from [14].

x̂(n|n− 1) = ρx̂(n− 1|n− 1)

M(n|n− 1) = ρ2M(n− 1|n− 1) + σ2
u

K(n) = M(n|n− 1)h∗(n)[σ2
v + |h(n)|2M(n|n− 1)]−1

x̂(n|n) = x̂(n|n− 1) +K(n)(y(n)− h(n)x̂(n|n− 1))

M(n|n) = (I −K(n)h(n))M(n|n− 1) (2)

Given the above equations, we can show that the instanta-

neous estimation error variance denoted by M(n) (with abuse

of notation instead of M(n|n)) can be written recursively in

terms of its previous values and current value of h(n), i.e. we

have that

M(n) = (I −K(n)h(n))M(n|n− 1) (3)

=

(

I −
M(n|n− 1)|h(n)|2

σ2
v + h2(n)M(n|n− 1)

)

M(n|n− 1),

which with necessary manipulations results in

M(n) =
ρ2M(n− 1) + σ2

u

1 + γ(n) (ρ2M(n− 1) + σ2
u)

. (4)

Note that in (4), γ(n) = |h(n)|2/σ2
v corresponds to the in-

stantaneous channel SNR.

In order to characterize the random estimation outage

event, we define estimation error outage probability (EOP) as

Pn
out(Mth) = Pr(M(n) ≥ Mth) (5)

and in particular the asymptotic EOP which we are interested

in, in order to characterize the steady-state distributions, i.e.

Pout(Mth) = lim
n→∞

Pn
out(Mth) = lim

n→∞
Pr(M(n) ≥ Mth) (6)

Clearly Pn
out(Mth) = 1 − FM(n)(Mth) and Pout(Mth) =

1−FM (Mth), where FM(n)(M) (FM (M)) is the cumulative

(asymptotic) distribution function of M(n).

3. STATISTICAL PROPERTIES OF

INSTANTANEOUS ESTIMATION ERROR VARIANCE

In this section we study the asymptotic probability distribu-

tion function of the IEV, i.e. fM (M). In that way, not only

the EOP will readily be obtained with one integration over the

pdf, other moments such as mean and variance, if needed, can

be obtained or bounded.

3.1. Asymptotic pdf of the instantaneous estimation error

variance

We begin by finding Pr(M(n) 6 M |M(n− 1) = m).

Pr (M(n) 6 M |M(n− 1) = m)

= Pr(
ρ2M(n− 1) + σ2

u

1 + γ(n) (ρ2M(n− 1) + σ2
u)

6 M |M(n− 1) = m)

= Pr(
1 + γ(n)

(

ρ2M(n− 1) + σ2
u

)

ρ2M(n− 1) + σ2
u

>
1

M
|M(n− 1) = m)

= 1− Fγ

( 1

M
−

1

ρ2m+ σ2
u

)

(7)

where the cumulative distribution function of γ(n) is given

with Fγ(γ). Clearly by (4), M(n) is only a function of M(n−
1) and γ(n), i.e. M(n) is a first-order non-linear Markov pro-

cess, where the transition probability depends on γ(n). Then

the cumulative distribution function of M(n) conditioned on

M(n−1) is given in (7). If γ(n) is independent of M(n−1),
and in addition γ(n)’s are independent and identically dis-

tributed (i.i.d), we get the following

FM(n)(M) =
∫

m∈RM

Pr
(

M(n) 6 M |M(n− 1) = m
)

fM(n−1)(m)dm. (8)



In (8), RM is the domain of integration over m (range

of M) and may differ depending on different system pa-

rameters (exact value in Appendix A). Due to the fact that
∫

m∈RM
fM(n−1)(m)d(m) = 1, then (8) leads to

FM(n)(M) =
∫

m∈RM

(

1− Fγ

(

1

M
−

1

ρ2M(n− 1) + σ2
u

))

fM(n−1)(m)dm

= 1−

∫

m∈RM

Fγ

(

1

M
−

1

ρ2M(n− 1) + σ2
u

)

fM(n−1)(m)dm.

(9)

Finally we get limn→∞ FM(n)(M) = limn→∞ FM(n−1)(M) =
FM (M), and limn→∞ fM(n)(M) = limn→∞ fM(n−1)(M) =
fM (M). As a result (9) can be rewritten as

FM (M) = 1−

∫

m∈RM

Fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM (m)dm. (10)

In order to get the required pdf, i.e. fM (M), we provide the

following lemma that describes the asymptotic pdf of M(n),
i.e. fM (M) in terms of itself integrated with a kernel that is a

function of the instantaneous channel SNR. Solving this equa-

tion leads to fM (M) and with one integration to Pout(Mth) for

a specific Mth, which is the target.

Lemma 1: Asymptotic pdf of M(n), namely fM (M) can

be obtained from the following equation

fM (M)

=







1
M2

∫Mmax

0
fγ

(

1
M

− 1
ρ2m+σ2

u

)

fM (m)dm, M 6 σ2
u

1
M2

∫Mmax

M−σ2
u

ρ2

fγ

(

1
M

− 1
ρ2m+σ2

u

)

fM (m)dm, M > σ2
u

(11)

Proof: See Appendix A

Solving (11) then yields fM (M). We have now described

the asymptotic pdf of M(n) using the equations in (11). Here-

after, we focus on the important case of Rayleigh fading chan-

nels where Fγ(γ) = λe−λγU(γ). Note that with this defini-

tion, λ = 1
E(γ(n)) = σ2

v/E(|h(n)|2), i.e. average stronger

channels yield smaller values for λ and vice versa.

3.2. Bounds on outage probability of the instantaneous

estimation error variance under Rayleigh fading channel

We can rewrite (11) given that channel is Rayleigh fading and

obtain

fM (M) =







λ
M2 exp(−λ

M
)
∫Mmax

0
Q(λ,m)dm, M 6 σ2

u
λ

M2 exp(−λ
M

)
∫Mmax

M−σ2
u

ρ2

Q(λ,m)dm, M > σ2
u.

(12)

with Q(λ,m) = exp
(

λ
ρ2m+σ2

u

)

fM (m)dm.

In order to get more insight, (12) can also be written as

fM (M)

=















κλ
M2 exp(−λ

M
), M 6 σ2

u
κλ
M2 exp(−λ

M
)− λ

M2 exp(−λ
M

)×

∫

M−σ2
u

ρ2

0 exp
(

λ
ρ2m+σ2

u

)

fM (m)dm, M > σ2
u,

(13)

where
κ =

∫ Mmax

0

exp

(

λ

ρ2m+ σ2
u

)

fM (m)dm. (14)

Though in general κ depends on the pdf itself, (13) is insight-

ful in the sense that it shows the exact shape of the pdf for the

first part where M 6 σ2
u. The point M = σ2

u corresponds

to the steady-state covariance of the signal x(n) for ρ = 0,

while Mmax corresponds to the upper limit value of the IEV

(happens when γ(0) = 0). It can be shown that for high SNR,

the pdf tail vanishes after the break point. Therefore getting

bounds on the first part helps with understanding the pdf be-

havior and at the same time getting approximate values and

bounds for Pout. In the following and using (13), we find up-

per and lower bounds for κ and through that, upper and lower

bounds for Pout for M 6 σ2
u. Note that in practice, M 6 σ2

u

corresponds to higher values EOP and thus more important to

characterize.

Though the pdf is given by the equation fM (M) =
κλ
M2 exp(−λ

M
) (M 6 σ2

u), the exact value of κ depends on

the whole pdf and cannot be known without solving (13).

However, it is possible to obtain the following bounds for κ,

namely κl < κ < κu.

Lemma 2: For all M 6 σ2
u, we have κl < κ < κu, where

κu =
1

(

aκexp
(

−λ
σ2
u(1+ρ2)

)

+ exp(− λ
σ2
u
)
) (15)

κl =
1

(

aκexp( −λ
ρ2Mmax+σ2

u
) + exp(− λ

σ2
u
)
) (16)

with aκ defined as

aκ = 1−

∫ σ2

u

0

exp

(

λ

ρ2m+ σ2
u

)

(
λ

m2
)exp(

−λ

m
)dm (17)

Proof: Using the fact that the
∫Mmax

0
fM (m)dm = 1 gives

∫Mmax

σ2
u

fM (m)dm = 1 − κexp(−λ
σ2
u
). Next, one divides the

domain of integral in (14) into m 6 σ2
u and m > σ2

u and uses

the definition of fM (M) for the first part. This results in

κ =

∫Mmax

σ2
u

exp( λ
ρ2m+σ2

u
)fM (m)dm

1−
∫ σ2

u

0
exp( λ

ρ2m+σ2
u
)
(

λ
m2

)

exp(−λ
m

)dm
(18)

Considering that σ2
u 6 ρ2m+σ2

u 6 ρ2Mmax +σ2 and apply-

ing it to the two equations involving κ and doing the necessary

algebraic manipulations, gives the required result.
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Fig. 1. Asymptotic pdf of M(n) and its estimates using the

upper and lower bounds for κ with σ2
u = σ2

v = 1, ρ = 0.95,

λ = 0.25 (Average SNR = 6 dB).

To show how close the bounds for κ are, we have plotted

the pdf from simulation and also two approximations using

the bounds for κ in Fig. 1 for σ2
u = σ2

v = 1, λ = 0.25, and

ρ = 0.95. Note that the bounds are only guaranteed to hold

for M 6 σ2
u. As a result, one could see that the lower bound

does not perform well for M > σ2
u in Fig. 1. It can also be

shown that the gap between the bounds and the actual values

decreases as SNR goes to infinity, but proof is omitted due to

lack of space. With Lemma 2 at hand, we are now ready to

present upper and lower bounds for Pout. As defined before,

Pout is given by

Pout =

∫ Mmax

Mth

fM (M)dM (19)

For M 6 σ2
u, we get

Pout(Mth) =

∫ Mmax

Mth

κλ

M2
exp(

−λ

M
)dM = 1− κexp(

−λ

Mth

)

(20)

As we showed in the previous section, κl < κ < κu. As a

result, we get

1− κuexp(
−λ

Mth

) < Pout(Mth) < 1− κlexp(
−λ

Mth

) (21)

which gives us an upper bound and a lower bound for

Pout(Mth). Figure 2 depicts the outage probability and the

bounds for the case when σ2
u = σ2

v = 1, λ = 1, 0.5, 0.25, and

ρ = 0.95 and for M 6 σ2
u. As it can be seen in the figure, the

bounds are quite good for the aforementioned range and they

become tighter as the channel SNR increases (λ decreases).
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Fig. 2. Pout and the upper and lower bounds with σ2
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v =
1, ρ = 0.95, λ = 1, 0.5, 0.25 (Average SNR = 0, 3, 6 dB

respectively).

4. CONCLUSIONS

In this paper, a recursive integral equation approach was pre-

sented for finding the pdf of the instantaneous estimation er-

ror variance for MMSE estimation of scalar Gauss-Markov

signals sent over fading channels. We incorporated the no-

tion of estimation error outage as a means of characterizing

the estimation accuracy. It was shown that the pdf can be

written as a two-part function over the domain of instanta-

neous estimation error variance values. The first part of the

pdf, which correspond to higher outage probabilities, follows

a closed-form non-recursive equation. As a result and for the

case of Rayleigh fading channels, the outage probability can

be approximated with a closed-form formula for the first part.

Upper and lower bounds on the estimation error outage prob-

ability were also obtained to simplify characterization of es-

timation error outage. The presented bounds become visibly

tight as the SNR increases.

A. ASYMPTOTIC PDF FOR EOP

In order to get fM (M), we have

fM (M)

=
∂

∂M



1−

∫

m∈RM

Fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM (m)dm





= −
∂

∂M

∫

m∈RM

Fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM (y)dm (22)



Note that P (n) > 0, and therefore M,m > 0. Also

γ(n) = |h(n)|2/σ2
v > 0, and therefore we should have

1
M

− 1
ρ2m+σ2

u
> 0, which results in m >

M−σ2

u

ρ2 . Therefore

RM = [max{0,
M − σ2

u

ρ2
},Mmax], (23)

or

RM =

{

0 6 m < Mmax, M 6 σ2
u

M−σ2

u

ρ2 6 m < Mmax, M > σ2
u,

(24)

where

Mmax =

{

∞, |ρ| > 1
σ2

u

1−ρ2 , |ρ| < 1.
(25)

Now if M 6 σ2
u (for any ρ), we get

fM (M) = −
∂

∂M

∫ Mmax

0

Fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM (m)dm

=
1

M2

∫ Mmax

0

fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM (m)dm

due to the Leibnitz’s differentiation law.

Now we take M > σ2
u and we get

fM (M) = −
∂

∂M

∫ Mmax

M−σ2
u

ρ2

Fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM (m)dm

= −

∫ Mmax

M−σ2
u

ρ2

∂

∂M
Fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM (m)dm

+
∂

∂M

M − σ2
u

ρ2
Fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM (m)

∣

∣

∣

∣

∣

m=
M−σ2

u

ρ2

=
1

M2

∫ Mmax

M−σ2
u

ρ2

fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM (m)dm

+
1

ρ2
Fγ(0)fM (

M − σ2
u

ρ2
). (26)

Because Fγ() is a CDF, then Fγ(0) = 0, therefore

fM (M) =
1

M2

∫ Mmax

M−σ2
u

ρ2

fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM (m)dm

(27)

and the proof is complete.
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