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ABSTRACT

Matrix completion is the process of estimating missing entries from
a matrix using some prior knowledge. Typically, the prior knowl-
edge is that the matrix is low-rank. In this paper, we present an
extension of standard matrix completion that leverages prior knowl-
edge that the matrix is low-rank and that the data samples can be
efficiently represented by a fixed known dictionary. Specifically, we
compute a low-rank representation of a data matrix with respect to a
given dictionary using only a few observed entries. A novel modified
version of the singular value thresholding (SVT) algorithm named
joint low-rank representation and matrix completion SVT (J-SVT)
is proposed. Experiments on simulated data show that the proposed
J-SVT algorithm provides better reconstruction results compared to
standard matrix completion.

Index Terms— low-rank representation, matrix completion,
singular value thresholding, dictionary representation

1. INTRODUCTION

Many real-world problems often require the estimation of a matrix
with missing entries. In general, the matrix completion problem in-
volves the computation of the missing entries in a partially observed
data matrix by imposing high data redundancy constraints through a
low-rank model. The seminal papers [1, 2] prove that in many cases,
the matrix can be correctly estimated with high probability from a
number of observed entries greater than or equal to a certain constant
value. The estimation is in the form of a rank minimization problem,
where the nuclear norm [3], i.e., sum of the singular values, is used
as the convex surrogate of the rank function.

Many algorithms have been proposed to solve the matrix com-
pletion (MC) problem. They can be summarized into two main
categories with respect to the nature of the optimization problem.
The first group of algorithms employs nuclear norm minimization
such as in singular value thresholding (SVT) [4], templates for
first-order conic solvers (TFOCS) [5], accelerated proximal gra-
dient (APGL) [6] and augmented Lagrange multiplier (ALM) [7].
The second class of MC algorithms minimizes an approximation
error objective function on a Grassmann manifold as examined
in OPTSPACE [8], subspace evolution and transfer (SET) [9],
Grassmanian rank-one update subspace estimation (GROUSE) [10],
scaled gradients on Grassmann manifolds (ScGrassMC) [11], etc.
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Additionally, the low-rank matrix fitting algorithm (LMaFit) [12]
optimizes an approximation error objective function based on the
nuclear norm minimization framework, while in [13] MC is studied
from a Bayesian point of view.

Over the last few years, MC has been tested in a wide range of
practical applications including robust video denoising [14], bear-
ing estimation of narrowband sources in sensor arrays [15], received
signal-strength fingerprint based indoor localization in wireless lo-
cal area networks [16] and audio bandwidth expansion [17]. It has
also been utilized for other scientific problems such as position cali-
bration in circular ultrasound tomography devices [18], high-quality
reconstructions for large scale seismic interpolation problems [19],
etc.

Nuclear norm minimization for subspace segmentation has been
developed in parallel with MC since the germinal work introduced
in [20]. The described low-rank representation idea looks for the
lowest rank estimate of a data matrix with respect to a collection
of data drawn from a union of multiple subspaces. Specifically, a
learned dictionary or the data matrix itself can be exploited for seek-
ing the low-rank representation (LRR) of the data. LRR seems to
be very promising especially for classification tasks. For example,
[21, 22] show that minimizing a nuclear norm based objective func-
tion coupled with sparsity constraints and a discriminative (or su-
pervised) term enhances the power to discriminate features in image
recognition. In [23] LRR is also adopted for music tagging, while
in [24] is extended to the case of multiple dictionaries for music and
singing voice separation.

Contributions. In this paper, we propose a joint LRR and MC
approach in the light of SVT framework. Especially, we are inter-
ested in studying the effect of estimating the lowest rank representa-
tion of a data matrix with respect to a given basis or dictionary con-
nected with a partially observed version of it under an SVT scheme.
A dictionary based MC method has been recently proposed in [25],
where a similar optimization problem is examined for reconstruction
and classification of simulated sensor network data using the CVX
software package [26]. This method can potentially solve problems
of very small size, however, the computational time is prohibitive
for practical applications even for data matrices of moderate size.
The novelty of the current paper is twofold. Firstly, in the current
work a more rigorous mathematical formulation of the joint LRR
and MC problem is presented by restating the optimization prob-
lem and giving a detailed algorithmic process for the estimation of
the data matrix. Secondly, we employ an SVT algorithmic solution
especially targeted for medium scale data, where an experimental
evaluation is performed on synthetic data proving the efficacy of the
proposed method. To the best of our knowledge, this is the first time



that LRR is connected with MC under an SVT algorithmic process.
Our proposed approach can be regarded as an enhanced version of
SVT in the case that we have knowledge of the data generation pro-
cess via a dictionary or basis. Therefore, we are strongly interested
in examining the performance of the proposed algorithm versus the
performance of the typical SVT algorithm under these conditions.

The rest of the paper is organized as follows: Section 2 briefly
overviews the matrix completion problem solved by the SVT algo-
rithm, while Section 3 describes the proposed joint LRR and MC
approach along with an SVT-based solution. An experimental eval-
uation of the proposed technique compared with typical SVT algo-
rithm is described in Section 4. Finally, Section 5 summarizes the
main conclusions and gives directions for future research work. For
notation, we use ‖ · ‖2 for the Euclidean norm on vectors and ‖ · ‖F
and ‖ · ‖ for the Frobenius and spectral/operator norm on matrices,
respectively.

2. SINGULAR VALUE THRESHOLDING FOR MATRIX
COMPLETION

Matrix completion (MC) enables the recovery of a low rank or
approximately low rank matrix M ∈ Rn1×n2 from at least
O(nrν ln2 n) entries selected uniformly at random (with ν cor-
responding to the so-called degree of incoherence) [27], where
n = max{n1, n2} and r = rank(M). Here and for the rest of
the paper we will assume that all the scalars, vectors and matrices
are real-valued. The original matrix can be recovered from the par-
tially observed matrix by solving the following convex optimization
problem

min
X

‖X‖∗
s.t. Xij = Mij , (i, j) ∈ I ⊂ {1, . . . , n1} × {1, . . . , n2},

(1)
where k = |I| ≥ Cnr ln2 n denotes the number of observed entries
(C is a positive constant), X ∈ Rn1×n2 is the decision variable
and the nuclear norm is defined as ‖X‖∗ =

∑min{n1,n2}
q=1 σq with

σ1, . . . , σmin{n1,n2} ≥ 0 corresponding to the singular values of
X .

Let us introduce the standard matrix completion linear map A :
Rn1×n2 → Rk. The constraints Xij = Mij , ∀ (i, j) ∈ I in (1)
can be represented by using the linear map AI as follows

min
X
‖X‖∗ s.t. AI(X) = ~b, (2)

where ~b := AI(M) contains the sample values extracted from M .
Each row of AI(M) corresponds the sampling of a single (i, j)
element of M . The equality constraint in (2) can also be written in
matrix form

(∀X ∈ Rn1×n2) AI(X) ≡ A~x, ~x := vec(X) (3)

where A ∈ Rk×n1n2 and vec(·) : Rn1×n2 → Rn1n2×1 denotes the
vectorization mapping; any vectorization mapping (e.g., row major
order or column major order) is acceptable as long as it is fixed. In
matrix completion, each row of A contains exactly 1 non-zero entry.

We also make use of the adjoint of AI which takes a vector
and maps it to a sparse matrix with the nonzero entries of the sparse
matrix corresponding to I. Specifically,

A∗I(·) : Rk×1 → Rn1×n2 with k = |I| ≤ n1n2,

and we have the property

(∀~h ∈ Rk×1) ~h = AI(A∗I(~h)).

This work is based on the SVT [4] algorithm for MC problems
since SVT is efficient and, as we will show, can be extended to solve
the joint LRR-MC problem. Specifically, SVT minimizes the fol-
lowing constraint problem

min
X

τ ‖X‖∗ +
1

2
‖X‖2F s.t. AI(X) = AI(M), (4)

where the positive constant τ is a trade off between the nuclear and
Frobenius norm. The solution to problem (4) converges to that of (1)
as τ →∞.

SVT comprises the two following iterative steps{
Xt = Dτ (A∗I(~yt−1))

~yt = ~yt−1 − δt(AI(Xt)− ~b).
(5)

In the above equation the shrinkage operator Dτ , also known
as soft-thresholding operator, is denoted as Dτ = UΣτV

T

where U and V are matrices with orthonormal columns and
Στ = diag(max{σi − τ, 0}) with {σi}min{n1,n2}

i=1 correspond-
ing to the singular values of the decomposed matrix. The step size
of the iterative algorithmic process is given by δt.

3. JOINT LOW RANK REPRESENTATION AND MATRIX
COMPLETION USING SVT

Singular value decomposition (SVD) followed by soft-thresholding
on the computed singular values constitutes the core of the SVT al-
gorithm described in Section 2. Any procurable information of the
underlying procedure that generated the data matrix M is not taken
into account by MC. Sometimes this property is considered as an
asset since it does not require the explicit knowledge of such a gen-
eration procedure. In other cases, however, extra information about
the data matrix is available and exploiting this knowledge can lead
to more accurate solutions of different tasks at hand.

As mentioned in Section 1, the low-rank representation (LRR)
approach has been recently introduced as an alternative to typical
subspace-based methods like the SVD. The goal is to find the lowest
rank representation of a data matrix by solving the following convex
optimization problem

min
L
‖L‖∗ s.t. M = ML, (6)

where M is the data matrix and L is a low-rank matrix. Adopting
the LRR formulation, let us assume that the additional information
of the data matrix M can be modelled according to a specific ma-
trix decomposition of the form M = GL, where G is a known
dictionary and L is a low-rank matrix containing the corresponding
representation coefficients. Thus, problem (6) can be formulated as

min
L
‖L‖∗ s.t. M = GL. (7)

To apply the LRR scheme on matrices with missing data, we use
the linear sampling operator AI . The proposed sampling scheme
is a combination of MC and LRR and seeks a low-rank coefficient
matrix L from a small number of measurementsAI(M). Thus, the
convex optimization problem takes the form below

min
L
‖L‖∗ s.t. AI(X) = AI(M) and X = GL. (8)

The goal is to efficiently solve problem (8) in the context of the SVT
algorithm so that we can solve large-scale problems. Hence, com-
bining (4) and (8) we get the joint LRR and MC version of SVT
dubbed J-SVT defined as follows

min
L

τ ‖L‖∗ +
1

2
‖L‖2F s.t. AI(X) = ~b and X = GL, (9)



where X ∈ Rn1×n2 , M ∈ Rn1×n2 , G ∈ Rn1×K , L ∈ RK×n2

and K denotes the size of the dictionary. In the J-SVT problem (9),

Algorithm 1: J-SVT algorithm

Input: AI , observed values ~b, dictionary G, step size δ,
tolerance ε, parameter τ > 0, maximum iterations
tmax

Output: estimated matrix X = GLT

1 Initialization: ~y1 = τ~b/‖GTA∗I(~b)‖
2 for t = 1 to tmax do
3 [U t,Σt,V t, st] = SVDshrink(GTA∗I(~yt), τ, st−1)

4 Lt = U tΣtV
T
t

5 if
∥∥∥AI(GLt)− ~b

∥∥∥
2
≤ ε

∥∥∥~b∥∥∥
2

then
6 break
7 end
8 ~yt+1 = ~yt − δ(AI(GLt)− ~b)

9 end

we consider the additional constraint that X must be in the form
X = GL for a fixed dictionary G. This constraint only amounts to
changing the linear operator, and that does not affect the convergence
proofs of SVT under a correctly scaled δ. Recall that SVT converges
with δ < 2‖AI‖−2. We have the following similar result:

Theorem 3.1. With step-size δ < 2‖AI ◦G‖−2, J-SVT produces a
sequence Lt that converges to the unique minimizer of (9).

Proof. The proof of convergence for the SVT algorithm only uses
the fact that AI is a linear operator and can be extended to handle a
generic linear operatorA. By lettingA = AI◦G andA∗ = GTA∗I
we arrive at J-SVT. The step-size must satisfy δ < 2‖A‖−2 =
2‖AI ◦G‖−2.

Since ‖AI ◦G‖ ≤ ‖G‖, the step-size can best estimated using
any upper bound on the spectral norm of G.

Algorithm 2 implements the SVDshrink operation. The
partialSVD(Z, s) algorithm returns the top s singular values and
singular vectors. The most common computational approach is the
Lanczos method. Here, we use the implementation in PROPACK,
which re-orthogonalizes the singular vectors as needed in order to
improve numerical stability. These Lanczos methods only require
matrix-vector multiplies of the form Z~u and ZT~v, and thus we take
advantage of sparsity in Z. If GT has a fast transform, we can also
take advantage of this, and never even need to explicitly form the G
or GT matrix (e.g., if G is the FFT or FFT-based).

Algorithm 2: SVDshrink algorithm
Input: internal integer parameter `

1 function SVDshrink(Z, τ, s0)
2 s← s0 + 1
3 repeat
4 [U ,Σ,V ] = partialSVD(Z, s)
5 s← s+ `
6 until Σs,s ≤ τ
7 return [U ,Dτ (Σ),V , s]
8 end function

In another improvement on regular SVT, we introduce the Nes-
terov accelerated [28] version, which applies to both MC and LRR-
MC problems.

Algorithm 3: Accelerated J-SVT algorithm: identical to J-
SVT except replace line 8 in J-SVT with the following and
initialize ~z1 = ~y1.

88 ~zt+1 = ~yt − δ(AI(GLt)− ~b)

99 ~yt+1 = ~zt+1 + t
t+3

(~zt+1 − ~zt)

Theorem 3.2. Algorithm 3 produces a sequence Lt that converges
to the unique minimizer of (9) if δ ≤ ‖AI ◦G‖−2.

Proof. This is a special case of the framework in [5] and the strong
convexity of the objective.

Note that we have lost a factor of 2 in the step-size bound in the
accelerated version, which is because we can no longer over-relax
(see [29]). Despite the smaller step-size, it has faster convergence
rate guarantees and typically works faster in practice.

4. EXPERIMENTAL RESULTS

In this section, we compare the reconstruction performance of the
proposed J-SVT scheme with the performance obtained by recon-
structing the missing data matrix using the SVT algorithm. For this
purpose, we perform simulations on synthetic data, where the dictio-
nary G and the low-rank representation matrix L are generated from
normally distributed random samples. As an evaluation metric, we
employ the relative error, which is defined as follows:

Relative error =

∥∥∥X̂ −M
∥∥∥
F

‖M‖F
,

where X̂ is the recovered matrix and M is the original full data
matrix. In the present case study, the size of the original data matrix
M is set equal to n1 × n2 = 300× 500. The maximum number of
iterations tmax, the tolerance ε and the parameter τ are set equal to
100, 10−5 and 5

√
n1 n2, respectively. The step size δ is set equal to

1.9 in the case of SVT, while for the accelerated version of J-SVT
we use δ = ‖G‖−2. In the subsequent experimental evaluation, the
reconstruction performance of both the J-SVT and SVT algorithms
is also examined as a function of the sampling ratio, which is given
by

Sampling ratio =
number of observed values (k)

matrix size (n1 × n2)
.

Based on 10 Monte Carlo runs for each scenario, the total average
were computed to show the overall relative errors for each algorithm.

As a first set of experiments, we examine the reconstruction per-
formance of J-SVT for a varying matrix rank. Figure 1 reveals that
our proposed J-SVT algorithm outperforms clearly the SVT coun-
terpart in case of a dictionary size 300 × 1500. More specifically,
Figure 1.(a) shows that the relative error achieved by J-SVT is al-
most zero for a sampling ratio (SR) > 0.3, while the relative error
achieved by SVT approaches zero for a significantly higher sam-
pling ratio SR > 0.7. The effect of a varying matrix rank is shown
in Figures 1.(b)-(d), which depict the reconstruction performance for
matrix ranks equal to 40, 70 and 100, respectively. As it can be seen,
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Fig. 1. Relative error as a function of sampling ratio. The size of dictionary
G is 300× 1500. The rank of matrix L is: (a) 10, (b) 40, (c) 70 and (d) 100.

the relative error corresponding to J-SVT is close to zero for SR
≈ 0.7, whereas the relative error of SVT approaches zero only for
an almost full sampling (SR ≈ 0.9).

The second set of experiments concerns the performance evalua-
tion of the two algorithms by varying the dictionary size. In Figure 2,
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Fig. 2. Relative error as a function of sampling ratio. The rank of matrix
L is 50. The size of dictionary G is: (a) 300 × 1000, (b) 300 × 1500, (c)
300× 2000 and (d) 300× 2500.

the reconstruction accuracy of J-SVT is compared with the perfor-
mance of SVT for dictionary sizes of 300 × 1000, 300 × 1500,
300 × 2000 and 300 × 2500, by fixing rank(L) = 50. Clearly, J-
SVT outperforms again SVT, while we highlight the approximately
constant recovery behaviour of J-SVT regardless of the dictionary
size. This observation is very important, since it reveals that J-SVT

is highly robust, in terms of achieving a low reconstruction error,
even in case of small-sized dictionaries, which represent our data in
a compact way. This comes also as a significant advantage of J-SVT
towards its application in practical scenarios, where the size of the
dictionary comes at the expense of an increased computational and
memory complexity.

As a final experimental evaluation, we compare the robustness
of J-SVT against SVT under noisy conditions. In particular, the
relative error curves presented in Figure 3 correspond to observed
data corrupted by additive white noise, with the signal-to-noise ratio
(SNR) being equal to 10, 15, 20 and 25 dB. As it can be seen J-SVT
achieves a significantly improved reconstruction quality in regard
with SVT. Especially in Figure 3.(b)-(d), SVT has almost twice as
high relative error on average for the same range of sampling ratio
values. As expected, the performance of SVT converges to the per-
formance of J-SVT for a full sampling ratio (= 1).
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Fig. 3. Relative error as a function of sampling ratio. The size of dictionary
G is 300× 1500 and the rank of matrix L is 50. The SNR level is set to: (a)
10 dB, (b) 15 dB, (c) 20 dB and (d) 25 dB.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a joint low-rank representation and ma-
trix completion scheme under a singular value thresholding frame-
work. It was shown, through an experimental evaluation on syn-
thetic data, that the proposed approach outperforms significantly the
SVT algorithm, in terms of reconstruction error, and in case that we
are aware of the data generation process via an appropriate dictio-
nary. As a future work, we intend to perform simulations on real
speech data in the context of missing data imputation. Towards this
direction, robust PCA could also be used to produce low-rank speech
features specially targeted for the J-SVT framework. We are also in-
terested in reducing the computational complexity of the proposed
approach by taking advantage of the dictionary structure. Besides,
we intend to study if the mathematical formulation of J-SVT can
be adopted from other algorithmic frameworks, such as augmented
Lagrange multipliers method.
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