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ABSTRACT
In this article we provide analyses of two low complexity

LMS algorithmic variants as they typically appear in the con-

text of FXLMS for active noise or vibration control in which

the reference signal is not obtained by sensors but internally

generated by the known engine speed. In particular we show

that the algorithm with real valued error is robust and exhibits

the same steady state quality as the original complex-valued

LMS algorithm but at the expense of only achieving half the

learning speed while its counterpart with real-valued regres-

sion vector behaves only equivalently in the statistical sense.

Index Terms— FXLMS algorithm, error bounds, l2-

stability, robustness, mean-square-convergence.

1. INTRODUCTION

In Figure 1 we depict the classical active noise suppression

setup as it is common in literature [1]. Recently such algo-

rithms have received more attention due to their applicability

in active engine mounts to suppress disturbing engine vibra-

tions [2–6]. Both have in common that the typical algorithm

to solve the control problem is the well-known Filtered-X-

Least Mean Square (FXLMS) algorithm [1, 7]. While clas-

sically the FXLMS algorithm requires measured sensor data

as input, in car engines, the vibrations are solely generated

by the engine not requiring additional sensors as the engine

speed in terms of its revolutions ω0 alone is sufficient knowl-

edge to reconstruct the vibration signal z(t):

z(t) =
L∑

l=1

wR,l cos(lω0t) + wI,l sin(lω0t)

= �
{
wTx(t)

}
, (1)

with wR,l and wI,l denoting the real and imaginary parts of

the vector entries w, corresponding to the linear system W in

Figure 1. The upper scripts T,H, and ’*’ as used here and in the
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following equations stand for transpose, Hermitian and con-

jugate complex, respectively. The driving source signal x(t)
can thus artificially be generated. Due to its signal structure

containing cos() and sin(), the adaptive control algorithm is

often formulated as complex-valued. The order of the adap-

tive filter M is selected to be L allowing to compensate the L
harmonics in the input signal. After sampling x(t), the now

complex-valued input vector xk has the following entries

xk = [exp(jΩ0k), exp(j2Ω0k), ..., exp(jLΩ0k)]
T
.(2)

The sampled output zk is additionally disturbed by noise vk
and we observe

dk = �
{
xT
kw + vk

}
. (3)

Together with the control signal yk an error term ẽf,k is phys-

ically generated. Thus a physical implementation of such sys-

tems must rely on the real part of ẽf,k, often further linearly

filtered by a so called auxiliary path H before measured.

While typically in such context the FXLMS algorithm [1,

7, 8] is applied, with its specific problems of including an

auxiliary path H , we will concentrate in this paper only on

specific properties of the driving process xk and the gradient

updates so that we simply set H = 1 in Fig. 1, obtaining an

LMS algorithm for which the filtered error signal ẽf,k = ẽa,k,

that is the distorted but unfiltered a-priori error signal. Equiv-

alently, we consider the LMS algorithm in its complex-valued

form [9], further referred to as CLMS:

ŵk = ŵk−1 + μx∗
kẽa,k, (4)

ẽa,k = dk − xT
kŵk−1. (5)

Due to the physical nature of the problem, a complex-valued

error signal ẽa,k cannot be applied to control the vibrations

and thus only the real part of the error signal �{ẽa,k} is being

applied, modifying the CLMS algorithm.

1.1. Relation to prior work

While the FXLMS algorithm has been analyzed for many

years [1, 7, 8, 10] and the CLMS is well known and under-

stood [9] with many applications in data transmission, using
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Fig. 1. Upper: Active vibration suppression. Lower: Equiva-
lent block diagram of the FXLMS algorithm.

simply the real part of either the error or the regression vector

in a CLMS algorithm is novel and has not been analyzed at

all. In [2,4] the algorithm with real error signal was proposed

but only its stability nature in the context of the FXLMS al-

gorithm has been analyzed. Experiments on vehicles [6] have

proven the algorithm to work but lack theoretical understand-

ing and thus step-sizes are selected based on experimental

data. This paper’s contribution is intended to fill this gap.

1.2. Notation and paper structure

We denote vectors by bold face type small variables and ma-

trices by capital letters. In the following Section 2 we in-

vestigate two variants of the CLMS algorithm, one with real-

valued error terms and due to symmetry we also analyze its

counterpart with real-valued regression vector. All together

the following two variants are of interest:

1. RELMS: algorithm with real-valued error

ŵk = ŵk−1 + μx∗
k�{ẽa,k} . (6)

2. RXLMS: algorithm with real-valued regression vector

ŵk = ŵk−1 + μ�{x∗
k} ẽa,k. (7)

Due to the multiplication with a real rather than a complex

valued term, both algorithms result in considerably less com-

plexity when compared to a conventional CLMS algorithm.

We continue our analysis of the algorithm and show robust-

ness only for the RELMS algorithm in Section 3 while its

counterpart the RXLMS algorithm behaves non-robustly un-

der worst case sequences. Finally, we present simulation re-

sults in Section 4 to support our theoretical findings and de-

liver some closing remarks in Section 5.

2. MSE ANALYSIS

Applying only the real part of the error term ea,k or alterna-

tively the real part of the regression vector xk results in re-

duced complexity. In the following we investigate the impact

on the learning speed and steady state of such variants.

Theorem 2.1 With respect to the Mean Squared Error
(MSE) of the parameter error vector, the RELMS and RXLMS
algorithm behave identically. Compared to CLMS they both

• exhibit the same steady-state values

• can only achieve half the learning speed.

Proof: We introduce the parameter error vector w̃k = w−ŵk

with w denoting our reference system (Wiener solution) and
formulate its updates explicitly into real and imaginary parts
(�{w̃k} = w̃R,k,�{w̃k} = w̃I,k). We obtain for CLMS:

[
w̃R,k

w̃I,k

]
= B

(LMS)
k

[
w̃R,k−1

w̃I,k−1

]

−μ

[
xR,kvR,k + xI,kvI,k
xR,kvI,k − xI,kvR,k

]

B
(LMS)
k = (8)

I−
[

μxR,kx
T
R,k + μxI,kx

T
I,k −μxR,kx

T
I,k + μxI,kx

T
R,k

μxR,kx
T
I,k − μxI,kx

T
R,k μxR,kx

T
R,k + μxI,kx

T
I,k

]

where we explicitly have split the noise into real and imagi-

nary part vk = vR,k + jvI,k.

For the RELMS algorithm:[
w̃R,k

w̃I,k

]
= B

(RE)
k

[
w̃R,k−1

w̃I,k−1

]
− μ

[
xR,kvR,k

−xI,kvR,k

]
B

(RE)
k =

[
I− μxR,kx

T
R,k μxR,kx

T
I,k

μxI,kx
T
R,k I− μxI,kx

T
I,k

]
(9)

while for the RXLMS algorithm we obtain[
w̃R,k

w̃I,k

]
= B

(RX)
k

[
w̃R,k−1

w̃I,k−1

]
− μ

[
xR,kvR,k

xR,kvI,k

]
B

(RX)
k =

[
I− μxR,kx

T
R,k μxR,kx

T
I,k

−μxR,kx
T
I,k I− μxR,kx

T
R,k

]
.(10)



Following a classical MSE analysis [11,12], we need to com-

pute the parameter error vector covariance matrix

Kk = IE

[[
w̃R,k

w̃I,k

] [
w̃R,k

w̃I,k

]T
]

(11)

=

[
KRR,k KRI,k

KIR,k KII,k

]
in dependence to the autocorrelation (acf) matrix of the input

signal Rx,R = IE[xR,kx
T
R,k] and Rx,I = IE[xI,kx

T
I,k]. To

simplify matters we limit our analysis to the circular Gaussian

case for which Rx,R = Rx,I = R. Let us introduce the

following matrix operators:

Pa[A] = A− 2μRA− 2μAR

+2μ2[3RAR+Rtr(AR)], (12)

Pb[A] = 2μ2[Rtr(RA)−RAR], (13)

Pc[A] = A− μRA− μAR

+μ2[2RAR+Rtr(AR)]. (14)

For the CLMS algorithm we obtain:

KRR,k = Pa[KRR,k−1]+Pb[KII,k−1]+μ2σ2
vR (15)

KRI,k = Pa[KRI,k−1]−Pb[KIR,k−1] (16)

KIR,k = Pa[KIR,k−1]−Pb[KRI,k−1] (17)

KII,k = Pa[KII,k−1]+Pb[KRR,k−1]+μ2σ2
vR.(18)

As KRI,k and KIR,k have no driving force, they are irrele-

vant and only the first and last term need to be considered. In

the RELMS and RXLMS algorithm, the terms look slightly

different; we find:

KRR,k = Pc[KRR,k−1] + μ2Rtr(KII,k−1R)

+
1

2
μ2σ2

vR (19)

KII,k = Pc[KII,k−1] + μ2Rtr(KRR,k−1R)

+
1

2
μ2σ2

vR. (20)

As before, KIR,k and KRI,k only depend on each other and

have no driving term, thus they are irrelevant to the algorith-

mic behavior.

The algorithmic learning behavior can now be evaluated,

following classic approaches. Diagonalizing the acf matrices

Λ = QRQH (correspondingly Pa[I] → Λa,Pb[I] → Λb),

and extracting the diagonal terms of the matrices in vector

form Λ → λ = [Λ11,Λ22, ...,ΛMM , ]T,KRR,k → cRR,k =
[(KRR,k)11, (KRR,k)22, ..., (KRR,k)MM ]T, ..., we obtain for

the CLMS algorithm[
cRR,k

cII,k

]
=

[
Λa Λb

Λb Λa

] [
cRR,k−1

cII,k−1

]
+ μ2σ2

v

[
λ
λ

]
.

(21)

The RELMS and RXLMS algorithms deliver similar terms:[
cRR,k

cII,k

]
=

[
Λc μ2λλT

μ2λλT Λc

] [
cRR,k−1

cII,k−1

]
+
μ2

2
σ2
v

[
λ
λ

]
. (22)

Learning: Compared to the CLMS algorithm, the two vari-

ants must behave slower in learning as the terms linear in μ
appear only with half their amount. While there is no ana-

lytical closed form for arbitrary correlation, it is possible to

compute the behavior under uncorrelated input, R = 1
2I. In

this case we find Λa = I(1 − 2μ + 3
2μ

2) + 1
2μ

211T and

Λb = 1
2μ

2(11T − I), while the two variants exhibit Λc =

I(1− μ+ 1
2μ

2) + 1
4μ

211T and off-diagonal terms in μ2. All

relevant eigenvalues can be computed. Important for learning

speed is the largest decisive eigenvalue, that is the eigenvalue

obtained for eigenvector 1. It depends on the step-size μ and

its smallest value is obtained for

μopt =
1

1 +M
, (23)

for all three algorithms. Also the stability limit at roughly

twice the optimal step-size does not differ. However the max-

imum speed of learning differs as the same optimal step-size

causes different values for CLMS and its variants. We find

the largest decisive eigenvalue to be

λ∗,LMS = 1− μopt (24)

λ∗,RE+RX = 1− 1

2
μopt, (25)

explaining that the two variants RELMS and RXLMS can

only achieve half of the learning speed of the CLMS algo-

rithm.

Steady-state: All algorithms end in the same steady state

quality. While in Eq. (22) we find only half the noise power

driving the dynamics of the system when compared to the

CLMS algorithm shown in Eq. (21), the contributions on the

linear part of the step-size are also only half. In steady-state

these terms compensate each other and thus all three algo-

rithms end up in the same steady-state values.

We restricted the analysis to the simplest case of Gaussian

driving processes. Methods to extend the results under arbi-

trary density functions and correlations can be found in [13].

3. ROBUSTNESS ANALYSIS

Theorem 3.2 The RELMS algorithm is as robust as the
CLMS algorithm. The RXLMS algorithm is non-robust.

Proof: We follow the approach of robustness analysis [12,

14–16]. Consider the RELMS algorithm in parameter error

vector form:

w̃k = w̃k−1 − μx∗
k�{ẽa,k} (26)

= w̃k−1 − μx∗
k�

{
xT
kw̃k−1

}
− μx∗

k�{vk} .



Building the squared l2−norm on both sides leads to

‖w̃k‖22 = ‖w̃k−1‖22 + μ2 ‖xk‖2 �2 {ẽa,k}
−2μ�{ea,k}�{ẽa,k} (27)

= ‖w̃k−1‖22 + μ2 ‖xk‖2 �2 {ẽa,k}
−μ

[�2 {ẽa,k}+ �2 {ea,k} − �2 {vk}
]
,

where we also introduced the undisturbed a priori error ea,k =

xT
kw̃k−1, ẽa,k = ea,k + vk. As long as μ2 ‖xk‖2 − μ < 0 we

can conclude local robustness

‖w̃k‖22 + μ�2 {ea,k}
‖w̃k−1‖22 + μ�2 {vk}

≤ 1, (28)

which can easily be extended to global robustness:

‖w̃N‖22 + μ
∑N

k=1 �2 {ea,k}
‖w̃0‖22 + μ

∑N
k=1 �2 {vk}

≤ 1. (29)

Applying the small gain theorem as in [12, 15, 16] allows

to prove that the algorithm behaves robustly for step-sizes

0 < μ < 2/‖xk‖22. A consequence of this behavior is that

there cannot be a single input sequence causing divergence.

The RXLMS algorithm however is non-robust. A similar re-

sult was already obtained in [17] where an LMS algorithm

was considered with corrupted regression vector. Taking only

the real-part of the regression vector can be interpreted as

such. As a consequence there exists input sequences that

cause the algorithm to diverge even if the step-size condition

is satisfied. Even arbitrarily small step-sizes can result in di-

vergence.

4. SIMULATION RESULTS

In our first experiment we compare RELMS and RXLMS

algorithms with CLMS behavior. We run Monte Carlo (MC)

simulations (averaged over 1 000 runs) for filters of order

M = 20 with white Gaussian noise as input signal. In Fig. 2

the obtained system mismatch (continuous lines) and their

predicted values (dashed lines) are depicted for step-sizes

μ = α/(1+M), α = {0.2, 0.5, 0.8, 1, 1.2, 1.5, 1.8}. We find

excellent agreement with the theoretical values (dashed linear

are basically invisible as hidden by continuous lines). The

RXLMS algorithm is not shown here as it behaves identically

to the RELMS algorithm.

In our second MC experiment we compare RXLMS and

RELMS algorithms under worst case situations. We con-

structed the worst case regression vectors by random search.

Although this does not guarantee to find the worst case se-

quence, it allows to clearly indicate if an algorithm can di-

verge by finding some very destructive sequences. Fig. 3 de-

picts the results when repeating the previous experiment for

the two LMS variants. As expected, only the RELMS algo-

rithm behaves robustly. Its learning rate is greatly hampered
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Fig. 2. Learning curves of CLMS and RELMS (MC: continu-
ous, theory: dashed). Both algorithms exhibit the same stabil-
ity and steady-state, RELMS exhibits a slower learning rate.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
Navg = 1000, σv

2 = 0.0001, M = 20, alg=LMS

adaptation step k

es
tim

. e
xp

ec
ta

tio
n 

of
 ||

w 0−
w

|| 22 /||
w

0|| 22  [d
B

]

αl = 0.2

αl = 0.5

αl = 0.8

αl = 1

αl = 1.2

αl = 1.5

αl = 1.8

αl = 0.2

αl = 0.5

αl = 0.8

αl = 1

αl = 1.2

αl = 1.5

αl = 1.8

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
Navg = 1000, σv

2 = 0.0001, M = 20, alg=RELMS

adaptation step k

es
tim

. e
xp

ec
ta

tio
n 

of
 ||

w 0−
w

|| 22 /||
w

0|| 22  [d
B

]

αl = 0.2

αl = 0.5

αl = 0.8

αl = 1

αl = 1.2

αl = 1.5

αl = 1.8

αl = 0.2

αl = 0.5

αl = 0.8

αl = 1

αl = 1.2

αl = 1.5

αl = 1.8

Fig. 3. Worst case learning curves of RELMS (robust) and
RXLMS (non robust).

by the found worst case sequences but there is no indication of

divergence. The situation is entirely different for the RXLMS

algorithm. Finding sequences to make the RXLMS diverging

was straightforward.

Experimental results in vehicles using an FXLMS algo-

rithm with real-valued error are presented in [6], confirming

our theoretical findings.

5. CONCLUSION

In this contribution we investigated two variants of the CLMS

algorithm as they are being applied in control of active engine

mounts to suppress disturbing engine vibrations. We clarified

some principal behavior of applying a real-valued error term

in complex-valued updates. Applying these variants to the

FXLMS algorithm, that is the LMS algorithm with filtered-

error term is expected to hamper the convergence speed but

not to impact the robustness of the algorithm.
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