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ABSTRACT

Adaptive filters in noise control applications have to approxi-

mate the primary path and compensate for the secondary-path.

This work shows that the primary- and secondary-path varia-

tions of noise control headphones depend above all on the

direction of incident noise and the tightness of the ear-cups.

Both kind of variations are investigated by preliminary mea-

surements, and it is further shown that the measured varia-

tions can be approximated with the linear combination of only

a few prototype filters. Thus, a parallel adaptive linear com-

biner is suggested instead of the typical adaptive transversal-

filter. Theoretical considerations and experimental results re-

veal that the parallel structure performs equally well, con-

verges even faster, and requires fewer adaptation weights.

Index Terms— Adaptive linear combiner, adaptive filter,

noise control headphones

1. INTRODUCTION

Active-Noise-Control (ANC) headphones cancel incident

ambient noise by playing back a destructively interfering

’anti-noise’. In adaptive feedforward ANC-headphones as in

Fig. 1, a reference x of the ambient noise is sensed with a

microphone outside the headphone (Mref). The noise prop-

agates through the primary path P (jω) (i.e. the earcup),

and, at the same time, the reference x is fed through the

adaptive filter g and is played back via the secondary-path

S(jω) (i.e. the loudspeaker) as ’anti-noise’ y. Inside the

ear-cups, the residual noise e is sensed with an error micro-

phone Me and is fed back to the adaptation algorithm. A very

popular adaption algorithm is the Least Mean Square (LMS)

because it is easy to implement and cost-efficient [1]. For

systems with non-negligible secondary-paths, x is filtered

with a secondary-path model Ŝ in order to keep the reference

time-aligned with the error signal; a strategy that is called

filtered-x-LMS (fxLMS) algorithm.
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Fig. 1. Adaptive noise control: Due to the delay in the secondary

path S, the input to the LMS update has to be filtered with a model

of Ŝ, too, which results in the filtered-x-LMS.

The adaptive filter itself is mostly an FIR filter. IIR fil-

ters would need fewer coefficients to yield similar transfer-

functions, but adapting the poles of IIRs might lead to insta-

bilities [2]. Therefore it has been suggested to keep the poles

fixed and to adapt only the zeros [3–5], or at least find some

FIR basis function that are able to model the poles [6]. The

pole locations are determined by preliminary offline measure-

ments of the system.

In the case of ANC headphones, the primary path P (jω)
and the secondary-path S(jω) (as in Fig. 1) have to be mea-

sured for different directions of incident sound and different

fittings of the headphones. Since not only the pole but also

the zero locations are readily known from such measurements,

this work proposes to determine the relevant zero-pole com-

binations via a principal component analysis (PCA) and to

implement the resulting IIR filters in parallel as adaptive lin-

ear combiner (ALC) like in Fig. 2. Its output is the linear

combination gTHTx, where x is a vector of input samples,

g is the vector of the adaptive weights and the columns of H

hold the impulse responses of the filters Hi.

The performance of the parallel IIR filters is compared

with an adaptive transversal-filter. The parallel IIRs yield

the same minimum-mean-square-error at a faster convergence

and with a minimal adaptation effort.
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Ŝ Ŝ Ŝ

Fig. 2. Adaptive linear combiner with three parallel filters Hi

2. REVIEW OF THE LMS ADAPTATION

The functionality and properties of ANC and the LMS are

well described in. [1, 7]. Its update reads as

g[n+ 1] = g[n] + µe[n]x′[n], (1)

where g is a vector of FIR filter taps (cf. Fig. 1) or a vector

of output weights of the adaptive linear combiner (cf. Fig. 2),

respectively; and x′ is a vector of filtered input samples.

In case of the transversal filter of Fig. 1, the input sam-

ples x are convolved with an estimate ŝ of the secondary-path

impulse response x′ = ŝ[n] ∗ x. In the case of the parallel

adaptive combiner of Fig. 2, x is additionally filtered with the

parallel filters Hl(jω) yielding x′ = ŝ[n] ∗HTx.

For the following text, it is important to review the step

size µ and the speed of convergence. The optimum choice

for µ depends on the eigenvalues of the input autocorrelation

matrix R = X′TX′, where X′ is a convolution matrix of the

filtered reference inputs
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with L corresponding to the length of vector g and N is the

length of the analysis window for the autocorrelation.

It is shown in [1, 7] that the LMS converges if 0 < µ <
1

λmax

and it converges fastest if µ = 1
2λmax

, where λmax is the

largest eigenvalue of R. The convergence time is bounded by

the ratio between the largest and the smallest eigenvalue, i.e.

the condition number of R.

3. PLANT VARIATIONS

The optimum adaptive transversal filter gopt of Fig. 1 has

to approximate the primary path P (jω) and compensate for

the secondary-path S(jω). In the frequency domain, it there-

fore reads as Gopt(jω) = P (jω)
S(jω) . It is advantageous to have

an adaptive filter because both paths, P (jω) and S(jω) may

change during the usage of the ANC headphones.

• The primary path P (jω) is the sound pressure relation

between the internal microphone (at point Me) and the ex-

ternal microphone (Mref). Firstly, this pressure relation de-

pends on the passive attenuation of the ear-cups and there-

fore on the tightness of the wearing situation. Secondly,

the phase of P (jω) depends on the direction of incident

sound.

• The secondary-path S(jω) is the transfer-function from

the loudspeaker to the error microphone inside the ear-

cup. This transfer-function again depends on the tight-

ness of the headphones. In the tight case, the ear-cup is

like a pressure chamber that allows reproducing enough

low frequency sound pressure level to get a flat frequency

response of S(jω). In the leaky case, the low frequency

sound is diffracted to the outside of the ear-cups and there-

fore the soundpower inside the headphones is diminished

[8].

It has to be assumed that the direction of incident sound

changes permanently while wearing ANC headphones be-

cause noise sources (e.g. traffic noise) move and users turn

their heads. Moreover, changes in the tightness of the head-

phones may occur if the headphones are shifted or slightly

lifted, especially in the case of non-circumaural headphones.

3.1. Plant Measurements

We measured P (jω) and S(jω) for all these main potential

variations. The headphones were put on a mannequin which

was placed on a turntable in the centre of a circular vertical

loudspeaker array as in Fig. 3. P (jω) was measured with

sine sweeps for 168 different directions for tight and leaky po-

sitioned headphones resulting in L = 336 measurements. For

the latter, the headphones were shifted back such that a leak

of approximately 2 mm in diameter was provoked between

the ear-cups and the intertragic notch of the mannequin’s ear.

The secondary path S(jω) was measured by playing back the

sine sweep via the headphones and the results are shown in

Fig. 4. As mentioned earlier, a magnitude drop-off can be

observed at low frequencies if the headphones are worn in a

leaky manner.

Fig. 5 shows the standard deviation of P (jω) over all

measured variations. Between 200 Hz and 1000 Hz neither

the magnitude nor the phase varies a lot. In this frequency

band a single static filter could yield robust ANC, too. How-

ever, for the frequencies below 200 Hz and above 1000 Hz,

an adaptive filter is required to cover all the variations.

Since we already know (the main) required filter varia-

tions, we do not need a fully adaptive filter. The question is

much more: Is there a set of filters Hi(jω) that can model all

l = 1 . . . L transfer-functionsWl(jω) =
Pl(jω)
Sl(jω) in the form of

the ALC in Fig. 2. This question can be answered by means

of a Principal Component Analysis (PCA).



Fig. 3. Setup to measure P (jω) and S(jω): The loudspeakers are

spaced every 12.5° from -75° to 87.5° on a vertical arc with 1.5 m

radius. The headphones are put on a mannequin, which turns 12 ×

30°.
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Fig. 4. Frequency response of S(jω) for tight and leaky positioned

headphones

4. PROTOTYPE FILTERS FOR THE ALC

4.1. PCA of the Required ANC Filters

The PCA changes the basis of a coordinate system with the

goal to reduce the redundancy of dimensions for a given set of

data. Its first principal component is the coordinate in which

the data has the largest variance. The second principal compo-

nent is orthogonal to the first and covers the largest remaining

variance of the data, and so forth.

In our case, we want to change the basis of the matrix W

whose columns are the impulse responses wl of all measured

variations of
Pl(jω)
Sl(jω) . The secondary-path in the denomina-

tor is the transfer-function from the loudspeaker to the error

microphone inside the ear-cup, and it is not minimum phase.

Thus its inverse is acausal. The same applies to P (jω) for

those directions where the sound hits the error microphone

earlier than the reference microphone. Since the acausal parts

cannot be cancelled by the ALC, only the causal parts of wl

are considered in W.

The PCA transforms W into a new matrix of impulse re-

sponses

H = QT
wW (3)
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Fig. 5. Standard deviation of (a) magnitude and (b) phase of P (jω)
over all measurements.
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Fig. 6. Explained variance of the ideal PCA vectors (a), and the

modelled IIR filters (b).

where the columns ofQw are the eigenvectors ofWTW. The

corresponding eigenvalues λwi are proportional to the vari-

ance that is explained by the corresponding principal compo-

nent.

Fig. 6a shows that the amount of explained variation in-

creases with the number of principal components. The im-

pulse response h1 (i.e. the vector of H corresponding to

the largest eigenvalue) already models 89% of all required

impulse responses with a scalable gain only, and four im-

pulse responses would already model over 95%. The required

transfer-functions Wl(jω) are thus all very similar.

The resulting impulse responses hi could directly be im-

plemented in the ALC as FIR filters. However, an IIR rep-

resentation of the impulse responses is beneficial in order to

reduce computational power and to allow for an analogue im-

plementation of the system.

4.2. IIR Model of the Principal Component Filters

The numerator and denominator polynomials that model a

given frequency response can be determined via the damped

Gauss-Newton algorithm [9]. Due to the group delay of

S, the impulse responses in W and H, respectively have

an immediate onset. Furthermore, P (jω) does not have

sharp resonances and S(jω) does not have sharp notches.

Therefore a robustly stable IIR filter can be expected by the

Gauss-Newton algorithm. The modelled IIR filters are only
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Fig. 7. Condition number dependent on filter number and order (a),

and magnitude response of the three 3rd order filters (b).

approximations to the ideal transfer-functions from the PCA.

The higher the IIR order, the closer is the approximation and

the more variance of wl can be explained.

The IIR filters are modelled with second, third, and forth

order and the explained variation is shown in Fig. 6b. Under

the premise that the total order of the adaptive linear combiner

should not be larger than 10, three 3rd order filters show the

best results.

In addition, the three 3rd order filters are expected to yield

a fast convergence because the condition number of HTH is

small as can be seen in Fig. 7a. The magnitude response of

the three chosen IIRs is shown in Fig. 7b.

5. RESULTS

The parallel IIR filters, with four numerator and three de-

nominator coefficients each, require 21 multiplications and

accumulations (MAC operations) per sampling interval. The

secondary-path estimate Ŝ can be modelled with three numer-

ator and two denominator coefficients. Thus, the three fil-

ter operations with Ŝ require another 15 MACs. With the

three weight updates of the ALC, the complete system re-

quires 39 MACs. This system is compared with an adaptive

transversal-FIR filter that requires the same amount of MACs.

The fxLMS of the transversal filter only requires one filter op-

eration with Ŝ, which consumes 5 MACs. That leaves 17 taps

and 17 updates for the transversal filter.

5.1. Theoretical Results

The noise-cancelling error of the parallel IIR filters can be

estimated as the difference between the measured variations

W and the adaptively combined IIRs:

E = W −HG, (4)

where H holds the three IIRs.The optimal weights can be de-

rived over the least-squares solution

G = (HTH)−1HTW. (5)
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energy over time with a sampling frequency of 11025 Hz.
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Fig. 9. Boxplot of estimated amount of residual noise.

To account for the sensitivity of the human ear, the opti-

mization could be weighted with an A-weighting curve, but

the above least-squares solution derives the minimum mean

square error that can be achieved with the simple LMS algo-

rithm.

The optimal solution of the transversal FIR are the first

17 samples of the impulse responses in W that can be seen

in Fig. 8a. At a sampling frequency of 11025 Hz, the 17

samples correspond to 1.5 ms. Fig. 8b shows that already 98%

of the impulse energy has passed after 1.5 ms or 17 samples,

respectively.

With the two above considerations, the noise-reduction of

the two systems can readily be estimated. The residual error

is set in relation to the reference x or wl, respectively, and it

is expressed in dB as

edB = 10 log

∑

n el[n]
2

∑

n x[n]
2
, (6)

Fig. 9a shows the distribution of edB over all l = 1 . . . 336
variations of wl. It can be seen that there is hardly any differ-

ence in the optimum performance of the two systems.

The second performance criteria for adaptive noise con-

trol is the convergence speed that is bounded by the condition

number of R. Table 1 compares the condition number of both

systems for white and pink noise. Both systems yield com-

parable condition numbers for white input noise. However

for pink noise, the orthogonality of the three IIRs yields a

far lower condition number than the autocorrelation matrix of

the transversal FIR. A faster convergence of the three IIRs can
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cond. white noise 1.1 1

cond. pink noise 20.0 60

λmax pink noise 210.0 590

Table 1. Condition number and λmax of R.
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Fig. 10. Median residual noise over time.

thus be expected in real life applications because pink noise is

a more realistic approximation of environmental noises than

white noise.

5.2. Experimental Results

Both systems are tested with pink noise played back from all

directions mentioned in section 3.1 with tight and leaky sitting

headphones. In real-life applications, a predefinedµ would be

normalized by the input noise power because it is infeasible

to constantly calculate the maximum eigenvalue of R. This

normalization would increase the complexity of the fxLMS,

but the complexity would be equally increased for both sys-

tems under comparison. However, for the experiments, µ is

still chosen according to 1
2λmax

with the maximum eigenval-

ues given in Table 1 in order to be able to compare the results

with the theoretical outcomes.

The distribution of the converged residual error over all

directions is shown in Fig. 9b. The difference between the

systems is even more balanced than in Fig. 9a.

In the second experiment, the transfer functions
P (jω)
S(jω)

changed every 0.5 seconds, but this time, the weights g were

reset to zero before every change. Fig. 10 shows the me-

dian convergence behaviour from this zero vector to all mea-

sured transfer functions as median error edB over time. It

confirms that the three parallel IIR filters converge faster than

the transversal FIR.

6. CONCLUSION

In this work, suitable adaptive linear combiners are investi-

gated for ANC headphones. The contributions of this paper

are: (i) The investigation of the plant variation with considera-

tion of different noise directions and different acoustic proper-

ties of the secondary-path. (ii) The deduction of parallel IIR

prototype filters via PCA and based on the aforementioned

measurements. (iii) The comparison of the parallel IIR-ALC

with a common adaptive transversal filter.

Restricted to a similar computation power, both systems

perform equally well. However, the parallel ALC converges

faster for coloured noise and requires less adaptation effort.

This is especially beneficial if an analogue implementation

of the adaptive system is desired. Analogue implementations

are faster and less energy consuming, but they suffer from

incorrect weight updates due to DC offsets in analogue active

circuits [10]. Less adaptive weights therefore mean less effort

to handle the DC offset.
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