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ABSTRACT
1
 

 

We propose an adaptive algorithm for estimating the 

frequency of a three-phase power system from its noisy 

voltage readings. We consider a second-order autoregressive 

linear predictive model for the noiseless complex-valued αβ 

signal of the system to relate the system frequency to the 

phase voltages. We use this model and the noisy voltage 

data to calculate a total least-square (TLS) estimate of the 

system frequency by employing the inverse power method 

in a recursive manner. Simulation results show that the 

proposed algorithm, called recursive TLS (RTLS), 

outperforms the recursive least-squares (RLS) and the bias-

compensated RLS (BCRLS) algorithms in estimating the 

frequency of both balanced and unbalanced three-phase 

power systems. Unlike BCRLS, RTLS does not require the 

prior knowledge of the noise variance. 

 

Index Terms—Adaptive signal processing, frequency 

estimation, inverse power method, linear predictive 

modeling, total least-squares. 

 

1. INTRODUCTION 

 

In electric power grids, deviation of the system frequency 

from its nominal value represents an imbalance between 

load and generation. Therefore, variations of the system 

frequency should be closely watched. Most protection-and-

control applications in electric power systems require 

accurate and fast estimation of the system frequency. An 

erroneous estimate of the frequency may eventually result in 

a catastrophic grid failure due to inadequate or delayed load 

shedding [1]-[5]. 

The Clarke’s transformation applied to the voltages of a 

three-phase power system produces a complex-valued signal 

(known as the    signal) that incorporates the information 

of the three phases. In many applications, the    signal can 

be considered as a faithful representative for a three-phase 

system [6]. The phase voltages are digitized at the 

measurement points by sampling at a fixed interval and 
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quantizing the samples. Therefore, in practice, the observed 

voltage data and consequently the    signal are 

contaminated with noise/error. 

From a signal-processing point of view, the noisy samples 

of the    signal and the sampling rate comprise the 

available data while the amplitudes of the three phase 

voltages, the initial phase angle, and the system frequency 

are the unknown parameters. A plethora of techniques have 

been developed to extract these parameters from the 

observable data. 

When the main objective is to estimate the system 

frequency, a second-order autoregressive (AR2) linear 

predictive model for time evolution of the noiseless    

signal can be employed [7]-[11]. This model, which we will 

simply call AR2, linearly relates three consecutive noiseless 

samples of the    signal via a single real-valued parameter 

that is equal to the cosine of the multiplication of the system 

angular frequency and the sampling interval. Thus, the 

system frequency can be estimated by identifying the 

parameter of the AR2 model from the noisy observations of 

the    signal while being safely oblivious to the values of 

the phase voltage amplitudes and the initial phase angle. In 

other words, since the parameter of the AR2 model depends 

only on the system frequency and the sampling interval, any 

frequency estimator built on this model is virtually 

insensitive to the balance state of the three-phase system. 

Relative values of the voltage amplitudes of three phases 

determine the balance state. 

Since the    signal is observed with noise, a reliable 

frequency estimation technique based on the AR2 model 

should minimize the effect of noise. In [9], [10], the least-

squares (LS) method has been used for this purpose. A 

recursive LS (RLS) frequency estimator has also been 

proposed in [11]. The LS-based approaches are best suited 

to counter the effect of noise at the output of a linear model. 

However, as in the AR2 model, the input of the model is 

also subject to observational noise, the LS-based frequency 

estimators are biased. One way to eliminate the estimation 

bias is to evaluate the bias separately and subtract it from 

the biased estimate [12]. However, evaluation of the bias 

usually requires prior knowledge of the noise variance or an 

extra procedure for estimating the noise variance. 

Alternatively, the total least-squares (TLS) estimation 

technique can be utilized to compensate for the noise at both 



input and output of the AR2 model. A TLS estimator can 

eliminate the estimation bias induced by the input noise 

without performing any explicit bias calculation [13]-[14]. 

The TLS technique has recently been utilized to estimate the 

frequency of three-phase power systems based on a first-

order autoregressive widely-linear predictive model for the 

noiseless    signal [15], [16]. 

In this paper, we derive a recursive TLS (RTLS) 

algorithm for adaptive frequency estimation of three-phase 

power systems. We use the AR2 model for the    signal 

and compute a TLS estimate of the model parameter by 

implementing a single iteration of the inverse power method 

[17] at each time instant. We verify the effectiveness of the 

proposed RTLS algorithm in estimating the frequency of 

three-phase power systems through simulated experiments. 

 

2. ALGORITHM DERIVATION 

 

The phase voltages of a three-phase power system, sampled 

at the interval of    , are expressed as 
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where     is the system frequency,   ,   , and      are 

the peak values,     is a constant initial phase angle, and 

     is the time index. In practice, the phase voltages are 

observed with noise. The noisy observations are expressed 

as 

      ̂        , 

      ̂        , 

and 

      ̂         

where     ,     , and        denote the additive noise at 

the respective phases. We assume that the noises are i.i.d. 

with zero mean and fixed variance. 

Application of the Clarke’s transformation to the 

observed noisy voltages of the three phases is formulated as 
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This transformation yields a complex-valued voltage signal 

(known as the    signal) that can represent the three-phase 

power system [6]. The noiseless    signal is calculated as 
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The noisy    signal is given by 
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where the additive complex noise is related to the noise at 

the individual phases via 
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We denote the variance of the absolute value of    by   , 

i.e.,     [|  |
 ]. 

It is known that the time evolution of the noiseless    

signal,  ̂ , can be described via a second-order 

autoregressive (AR2) linear predictive model as 
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where   is the model parameter expressed as 

     (    ). 

This model relates the system frequency to three 

consecutive noiseless voltage samples of the three phases in 

a linear manner. However, the measured samples are noisy. 

Hence, in order to identify the model parameter   and 

subsequently the system frequency, a reliable linear 

estimation technique need be employed that can minimize 

the effect of noise. 

Since both input and output in the AR2 model, (1), are 

observed with noise, we utilize the TLS estimation 

technique to identify  . For this purpose, we define the input 

and output data vectors as 
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respectively, where 

      {√     √       √   } 

is an exponential weighting matrix and       is the 

forgetting factor. We compute the TLS estimate of   at time 

instant  , denoted by   , such that it fits the input data 

vector,   , to the output data vector,   , by incurring 

minimum perturbation in the data, i.e., it holds that 

(     )         



where     
    and     

    are the minimum input and 

output perturbations, respectively. According to the analysis 

of [14], the TLS estimate is given by 
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 is the eigenvector corresponding to 

the smallest eigenvalue of the augmented and weighted data 

covariance matrix 

   [
  
 

   
 ] [      ]. 

The weight   accounts for the disparity in the variance of 

the noise at input and output, denoted by   
  and   

 , 

respectively, and is calculated as 
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The matrix    can be written as 
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The vector    is normally found using the eigenvalue 

decomposition of   . A computationally more efficient 

alternative is to update    adaptively by executing a single 

iteration of the inverse power method [17] at each time 

instant through the following recursion: 
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Multiplying both sides of (2) by    and dividing by 
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Substituting (4) into (3) and solving it for    yield a 

recursive TLS (RTLS) estimate of   as 
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Having calculated   , we can estimate the system frequency 

via 
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3. SIMULATIONS 

 

We compare the frequency estimation performance of the 

RLS algorithm, i.e., 

   
  
  
  

the bias-compensated RLS (BCRLS) algorithm, i.e., 

   
  
  
 

  

(   )  
      

and the RTLS algorithm, (5), for a three-phase power 

system where      Hz,     ms, and   
    

    
  

   ⁄   We also set        . 

In Fig. 1, we depict the estimated frequency using 

different algorithms when         and the system 

undergoes several voltage sags making it progressively 

more unbalanced as shown in Fig. 2. The system is balanced 

during the initial      seconds. Then, the voltage of phase c 

drops by    . After      seconds, the voltage of phase a, 

and after further      seconds, the voltage of phase b reduce 

to zero. Zero or almost zero phase voltages can occur in the 

aftermath of short-circuit to ground or combined 

asymmetric sags. It is observed from Fig. 1 that all the 

considered algorithms converge almost equally fast. 

In Fig. 3, we plot the estimated frequency using different 

algorithms when         and a sinusoidal oscillation 

occurs in the frequency of a balanced system after      

seconds. The peak and the maximum change rate for the 

oscillation are   Hz and   Hz/s, respectively. 

In Figs. 4-7, we plot the steady-state bias and root-mean-

square error, defined as 



 
Fig. 1. Estimated frequency of the system of Fig. 2. 

 

 
Fig. 2. Voltages of the three phases in the considered system. 
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respectively, against the signal-to-noise ratio (SNR), which 

is considered to be     , for different algorithms. In Figs. 4 

and 5, the system is balanced while, in Figs. 6 and 7, short 

circuit between phase a and ground has made the system 

unbalanced. We run the algorithms for   seconds to reach 

the steady state. We evaluate the expectations by taking the 

ensemble average over     independent trials and the 

steady-state values by averaging over the last     seconds. 

 

4. CONCLUSION 

 

We proposed an adaptive algorithm for estimating the 

frequency of three-phase power systems. To this end, we 

utilized an intrinsic second-order autoregressive linear 

predictive model for the noiseless    signal of the system 

whose parameter is equal to the cosine of the system 

frequency. Then, we found a TLS estimate for the model’s 
 

 
Fig. 3. Estimated and tracked frequency. 

 

parameter using the noisy observations of the    signal and 

employing the inverse power method in a recursive manner. 

The resultant recursive TLS (RTLS) algorithm compensates 

for noise at both input and output of the model. We showed 

through simulation examples that the RTLS algorithm 

 achieves considerably lower frequency estimation bias 

and root mean-square error compared with the RLS 

algorithm for both balanced and unbalanced three-phase 

power systems; 

 is more efficacious than the bias-compensated RLS 

algorithm in eliminating the estimation bias while 

bypassing the need for prior knowledge of the noise 

variance; 

 has a good capability to track the changes in the system 

frequency. 
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