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ABSTRACT

In this paper, we compare the efficiency of compensating nonlin-
ear distortions in electrodynamic loudspeaker system using 2nd- and
3rd-order nonlinear IIR filters. These filters need nonlinear parame-
ters of loudspeaker systems and we used estimated nonlinear param-
eters for evaluating the efficiency of compensating nonlinear distor-
tions of these filters. Therefore, these evaluation results include the
effect of the parameter estimation method. In this paper, we mea-
sure the nonlinear parameters using Klippel’s measurement equip-
ment and evaluate the compensation amount of both filters. Experi-
mental results demonstrate that the 3rd-order nonlinear IIR filter can
realize a reduction by 4dB more than the 2nd-order nonlinear IIR
filter on nonlinear distortions at high frequencies.

Index Terms— Loudspeaker system, Nonlinear distortion,
Nonlinear IIR filter, Mirror filter

1. INTRODUCTION

Loudspeaker cannot keep the proportional relationship between the
velocity of the diaphragm and sound pressure. This is because of
the nonlinearity of the voice coil driving system and the mechanical
nonlinearity of the edge and damper that support the diaphragm [1].
These distortions lead to the degradation of sound quality and some
researchers have attempted to compensate nonlinear distortions by
nonlinear digital signal processing, for example, Volterra filter-based
compensator [2–7].

One interesting approach to compensating nonlinear distortions
is to employ the mirror filter [8, 9]. This filter is derived from the
nonlinear differential equation for loudspeaker systems and includes
the nonlinearities of the force factor and stiffness of loudspeaker sys-
tems. This filter can be realized as a 2nd-order nonlinear IIR fil-
ter [10]. Hence, the computational complexity of this filter is lower
than that of a Volterra filter-based compensator. However, it cannot
compensate nonlinear distortions at high frequencies because this
filter does not take into account the nonlinearity of self-inductance,
which is a dominant component at high frequencies. In [11], 3rd-
order nonlinear IIR filter is proposed to compensate the nonlinear
distortions at high frequencies. This filter takes into account the non-
linearity of self-inductance of loudspeaker systems and has 3rd-order
IIR filter structure. Hence, this filter can reduce nonlinear distortions
at high frequencies while maintaining a lower computational com-
plexity than that of a Volterra filter-based compensator. These filters
need nonlinear parameters of loudspeaker systems and we used esti-
mated nonlinear parameters for evaluating the efficiency of compen-
sating nonlinear distortions of these filters. Therefore, these evalua-
tion results include the effect of the parameter estimation method.

In this paper, we measure the nonlinear parameters using
Klippel’s measurement equipment and evaluate the compensation
amount of both filters. Experimental results demonstrate that the
3rd-order nonlinear IIR filter can realize 4dB more reduction of
nonlinear distortions at high frequencies than the 2nd-order nonlin-
ear IIR filter.

2. LINEARIZATION OF LOUDSPEAKER SYSTEM USING
THIRD-ORDER NONLINEAR IIR FILTER [11]

The 2nd- and 3rd-order nonlinear IIR filters are based on mirror fil-
ter. Both the 2nd- and 3rd-order nonlinear IIR filters and mirror filter
are governed by the same fundamental equations, which are linear
and nonlinear differential equations for electrodynamic loudspeaker
system. The difference between the both nonlinear IIR filter and
mirror filter is calculation of the filter coefficients. The coefficients
of the mirror filter are directly calculated from linear and nonlinear
parameters of the loudspeaker. The values of them are in the differ-
ent ranges and have different units. Hence, the mirror filter cannot
be easily implemented in any processor, especially fixed-point pro-
cessors. On the other hand, the values of the coefficients of both
nonlinear IIR filters are in the same number of places and the filters
can be easily implemented into any processors (e.g. DSP). In this
section, the design of the 3rd-order nonlinear IIR filter is introduced.
This is the same concept of the designing of the 2nd-order nonlinear
IIR filter.

The concept of the design of 3rd-order nonlinear IIR filter has
two steps:

1. Realizing the linear motions (displacement x, velocity v, accel-
eration a, and jerk j).

2. Obtaining the voltage for realizing the expected linear motions
in the real loudspeaker system. This voltage is called the com-
pensation signal.

For realizing the linear motions, the motion equation and Kirchhoff’s
voltage law (KVL) with linear parameters [12,13] are utilized, which
are given by

Bl0i(t) =m0
d2x(t)

dt2
+K0x(t) +Rm

dx(t)

dt
, (1)

A0u(t) =Rei(t) +Bl0
dx(t)

dt
+ L0

di(t)

dt
, (2)

where u(t) is the input voltage, x(t) is the displacement of the di-
aphragm, A0 is the gain of the analogue part, Re is the electri-
cal resistance of the voice coil, m0 is the mechanical mass, Rm

is the mechanical resistance, K0 is the stiffness, Bl0 is the force



factor, and L0 is the self-inductance. In this case, the displace-
ment of the diaphragm x(t) and its derivatives v(t) = dx(t)/dt,
a(t) = d2x(t)/dt2 and j(t) = d3x(t)/dt3 do not exhibit nonlin-
earity. From these equations, the linear motions x(n), v(n), a(n),
j(n) at a discrete time are given by

x(n) =G0Z−1 [Hx(z)] ∗ u(n), (3)
v(n) =G0Z−1 [Hv(z)] ∗ u(n), (4)
a(n) =G0Z−1 [Ha(z)] ∗ u(n), (5)
j(n) =G0Z−1 [Hj(z)] ∗ u(n), (6)

Hx(z) =
hx0,P +hx1,P z

−1+hx2,P z
−2+hx3,P z

−3

1+B1,P z−1+B2,P z−2+B3,P z−3
, (7)

Hv(z) =
hv0,P +hv1,P z

−1+hv2,P z
−2+hv3,P z

−3

1+B1,P z−1+B2,P z−2+B3,P z−3
, (8)

Ha(z) =
ha0,P +ha1,P z

−1+ha2,P z
−2+ha3,P z

−3

1+B1,P z−1+B2,P z−2+B3,P z−3
, (9)

Hj(z) =
hj0,P +hj1,P z

−1+hj2,P z
−2+hj3,P z

−3

1+B1,P z−1+B2,P z−2+B3,P z−3
, (10)

where ∗ is the convolution operator, Z−1 is the inverse Z transform
operator,

hx0,P =
hx1,P

3
=

hx2,P

3
= hx3,P =

1

4f2
s

/
αP ,

hv0,P = hv1,P = −hv2,P = −hv3,P =
1

2fs

/
αP ,

ha0,P =−ha1,P = −ha2,P = ha3,P = 1
/
αP ,

hj0,P =−hj1,P

3
=

hj2,P

3
= −hj3,P = 2fs

/
αP ,

B1,P =

(
−1 +

ω0

2Q0fs
+ 3

ω2
0

4f2
s

)/
αP

+
2τ

Ts

(
−3− ω0

2Qmfs
+

ω2
0

4f2
s

)/
αP ,

B2,P =

(
−1− ω0

2Q0fs
+ 3

ω2
0

4f2
s

)/
αP

+
2τ

Ts

(
3− ω0

2Qmfs
− ω2

0

4f2
s

)/
αP ,

B3,P =

(
1− ω0

2Q0fs
+

ω2
0

4f2
s

)/
αP

+
2τ

Ts

(
−1 +

ω0

2Qmfs
− ω2

0

4f2
s

)/
αP .

αP =

(
1 +

ω0

2Q0fs
+

ω2
0

4f2
s

)
+

2τ

Ts

(
1 +

ω0

2Qmfs
+

ω2
0

4f2
s

)
,

where

G0 =
Bl0A0

Rem0
, ω0 =

√
K0

m0
, Q0 =

√
m0K0

Rm +Bl20/Re
,

Qm =

√
m0K0

Rm
, τ =

L0

Re
,

with ω0 being the lowest resonance frequency and Q0 the sharpness
of the resonance at ω0, the time constant τ , and Ts = 1/fs is the
sampling period. In the derivation of Eqs. (3) – (6), the bilinear
transformation is utilized.

For obtaining the voltage to realize the expected linear motions
x(n), v(n), a(n), j(n) in the real loudspeaker system, the nonlinear

motion equation and KVL with linear and nonlinear parameters [14]
are utilized, which are given by

Bl(x)i(t)=m0
d2x(t)

dt2
+K(x)x(t)+Rm

dx(t)

dt
− i2(t)

2

dL(x)

dx
,

(11)

A0u(t)=Rei(t)+Bl(x)
dx(t)

dt
+
dL(x)i(t)

dt
. (12)

where

Bl(x) =Bl0b(x) = Bl0(1 + b1x+ b2x
2), (13)

K(x) =K0k(x) = K0(1 + k1x+ k2x
2), (14)

L(x) = L0l(x) = L0(1 + l1x+ l2x
2 + l3x

3). (15)

However, it is impossible to derive the compensation signal from
Eqs. (11) and (12) because Eq. (11) includes i2(t) and does not yield
a single solution. Therefore, we consider only self-inductance. First,
we focus on the 4th term of Eq. (11), which represents the effect of
the nonlinearity of self-inductance. If the self-inductance is linear,
i.e, l1 = l2 = l3 = 0 in Eq. (15), Eq. (11) is rewritten as

Bl(x)iL(t)=m0
d2x(t)

dt2
+K(x)x(t)+Rm

dx(t)

dt
. (16)

This iL(t) represents the current for linearizing the self-inductance.
Then, Eqs. (11) and (12) are rewritten using iL(t) as

Bl(x)i(t)=m0
d2x(t)

dt2
+K(x)x(t)+Rm

dx(t)

dt
− i2L(t)

2

dL(x)

dx
,

(17)

A0u(t)=Rei(t)+Bl(x)
dx(t)

dt
+
dL(x)iL(t)

dt
. (18)

From Eqs. (17) and (18), the compensation signal at a discrete time
uL,P (n) is given by

uL,P (n) =
1

b (x(n))

[
a(n)

G0
+ω2

0k (x(n))
x(n)

G0

+

{
1+

(
1− Q0

Qm

)(
b2(x(n))−1

)} ω0

Q0

v(n)

G0

+ τ

{
∆[l (x(n))]− l (x(n))

b (x(n))
∆ [b (x(n))]

}
×
{
a(n)

G0
+

ω0

Qm

v(n)

G0
+ω2

0k (x(n))
x(n)

G0

}
+ τ l (x(n))

{
j(n)

G0
+

ω0

Qm

a(n)

G0

+ω2
0k (x(n))

v(n)

G0
+ω2

0∆[k (x(n))]
x(n)

G0

}]
+G(x(n))

{
a(n)

G0
+

ω0

Qm

v(n)

G0
+ω2

0k (x(n))
x(n)

G0

}2

,

(19)

G(x(n)) =− A0τ

2Bl0

1

b3(x(n))

{
l1 + 2l2x(n) + 3l3x

2(n)
}
,

where ∆[·] is the difference value given by

∆[f(x(n))]=
f(x(n))− f(x(n− 1))

Ts
.

The compensation signal that satisfies the linear displacement ex-
pressed by Eq. (3) can be realized with a 3rd-order nonlinear IIR
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Fig. 1. Block diagram of 3rd-order nonlinear IIR filter [11].
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Fig. 2. Block diagram of 2nd-order nonlinear IIR filter [10].

filter as shown in Fig. 1 and can be derived by substituting the lin-
ear characteristics expressed by Eqs. (3)–(6) into Eq. (19). The
coefficients in Fig. 1 are given by

Ci(x(n)) = hai,P + ω2
0k(x(n))hxi,P

+

{
1 +

(
1− Q0

Qm

)(
b2(x(n))− 1

)} ω0

Q0
hvi,P

+τ

{
∆[l(x(n))]− l(x(n))

b(x(n))
∆ [b(x(n))]

}
CLi(x(n))

+τ l(x(n))

{
hji,P +

ω0

Qm
hai,P + ω2

0k(x(n))hvi,P

+ω2
0∆[k(x(n))]hxi,P

}
,

CLi(x(n)) = hai,P +
ω0

Qm
hvi,P + ω2

0k(x(n))hxi,P ,

(i = 0, 1, 2, 3).

This filter generates the compensation signal in two steps. First, the
linear displacement x(n) is calculated. Next, the coefficients de-
pending on the displacement x(n) are calculated. These coefficients

Table 1. Specifications of experimental loudspeaker system.
Diameter 6.5cm
Rated power 6W
Electrical resistance 4Ω
Enclosure volume 0.6l
Enclosure type Closed-box
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Fig. 3. Impedance characteristic of experimental loudspeaker sys-
tem.

include the effects of the linear displacement, velocity, acceleration
and jerk. If the self-inductance of loudspeaker systems is ignored,
the 3rd-order nonlinear IIR filter reduces to the 2nd-order nonlinear
IIR filter shown in Fig. 2. That is, the 3rd-order nonlinear IIR filter
includes the conventional nonlinear IIR filter.

3. EXPERIMENTAL RESULTS

We conducted experiments on compensating the nonlinear distor-
tions of a loudspeaker system. The specifications of the loudspeaker
system and the impedance characteristic are shown in Table 1 and
Fig. 3, respectively. It can be seen from Fig. 3 that the impedance
starts to rise above 650Hz because of the effect of self-inductance.
The 2nd- and 3rd-order nonlinear IIR filters require the linear and
nonlinear parameters of the loudspeaker system. First, the linear
and nonlinear parameters of the loudspeaker system are measured.
Next, IIR filters are designed using the linear and nonlinear parame-
ters. Finally, the compensation signal through the 2nd- and 3rd-order
nonlinear IIR filter is generated then sent to the loudspeaker system
through an amplifier, and the compensation performance is measured
as the sound pressure level at a standard microphone.

3.1. Parameter Measurement

The linear and nonlinear parameters were measured by a measure-
ment instrument made by Klippel GmbH in Germany. The mea-
sured linear and nonlinear parameters are given in Table 2 and by
Eqs. (20)–(22), respectively.

Bl(x) =Bl0(1− 108x− 78800x2), (20)
K(x) =K0(1− 38x+ 17100x2), (21)
L(x) = L0(1− 217x+ 5400x2 + 1.11× 107x3). (22)

The relationships between the nonlinear parameters and the displace-
ment of the diaphragm obtained from Eqs. (20)–(22) are shown in
Fig. 4.



Table 2. Linear parameters of the loudspeaker system.
ω0 1052rad/s
Q0 1.78
Qm 5.32
Re 4.13Ω
Rm 0.62Ns/m
m0 3.14×10−3kg
K0 3480N/m
Bl0 2.26Wb/m
L0 0.15mH
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Fig. 4. Relationships between nonlinear parameters and displace-
ment of diaphragm.

3.2. Compensation Experiments

The 2nd- and 3rd-order nonlinear IIR filters are realized using the
measured parameters, and their effectiveness in compensating the
nonlinear distortions of the loudspeaker system is compared with
each other. The measurement conditions are shown in Table 3.

Table 3. Measurement conditions used for compensating nonlinear
distortions.

Input signal Swept sinusoidal wave
Sampling frequency fs 32000Hz
Fixed frequency m1 62Hz
Sweep frequency m2 30–4000Hz
Average 10
Input voltage 5.0V

Table 4. Comparison between average amounts of compensation of
nonlinear distortion of 2nd- and 3rd-order nonlinear IIR filters.

2nd-order 3rd-order
2m2 characteristic
30Hz–650Hz 2.6dB 2.2dB
650Hz–4000Hz -0.6dB 5.8dB
m1 +m2 characteristic
30Hz–650Hz 1.5dB 2.4dB
650Hz–4000Hz 1.7dB 4.3dB
m2 −m1 characteristic
30Hz–650Hz 3.7dB 4.4dB
650Hz–4000Hz 2.7dB 4.7dB

The sound pressure characteristics of the nonlinear distortions
are shown in Fig. 5, and the average amount of compensation of
nonlinear distortions are shown in Table 4. As observed in Fig. 5 and
Table 4, the 3rd-order nonlinear IIR filter can reduce the nonlinear
distortions by about 2 to 5dB more than the 2nd-order nonlinear IIR
filter at high frequencies. On the other hand, both filters can reduce
the nonlinear distortions by the same amount at low frequencies.

From these results, the 3rd-order nonlinear IIR filter is more
effective for compensating the nonlinear distortions of loudspeaker
systems than the 2nd-order nonlinear IIR filter.

3.3. Computational Complexity

The 2nd- and 3rd-order nonlinear IIR filters have recursive struc-
tures. Therefore, their computational complexity is lower than that
of Volterra filter-based compensators [2,5]. The 2nd-order nonlinear
IIR filter requires 20 multiplications to generate the compensation
signal. On the other hand, the number of multiplications required
by the 3rd-order nonlinear IIR filter is 110, which is higher than that
required by the 2nd-order nonlinear IIR filter. However, the number
of multiplications required by the 3rd-order nonlinear IIR filter is
much lower than that required by the Volterra filter-based system [5],
which is 5829 when the filter length is 128. Hence, it is easy to im-
plement the 3rd-order nonlinear IIR filter in DSP. The compensation
results using Volterra filter-based compensator is omitted due to lim-
itations of space.

4. CONCLUSIONS

In this paper, we compare an compensation ability of 3rd-order
nonlinear IIR filter and 2nd-order nonlinear IIR filter with linear and
nonlinear parameters measured by Klippel’s measurement equip-
ment. The compensation performance characteristics of the 2nd-
order and 3rd-order nonlinear IIR filters were compared through
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Fig. 5. Comparison between abilities of 2nd- and 3rd-order nonlin-
ear IIR filters to compensate nonlinear distortions.

actual experiments. The experimental results indicated that the 3rd-
order nonlinear IIR filter can reduce 2nd-order nonlinear distortions
by a greater amount than the 2nd-order nonlinear IIR filter. Hence,
we conclude that the 3rd-order nonlinear IIR filter is effective for
compensating the nonlinear distortions of loudspeaker systems.
In the future, we will develop a parameter estimation method to
compensate nonlinear distortions effectively.
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