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ABSTRACT 
 
This paper proposes a new adaptation algorithm named 
Normalized Recursive Least Moduli (NRLM) algorithm 
which employs “p-modulus” of error and “q-norm” of filter 
input. p-modulus and q-norm are generalization of the 
modulus and norm used in complex-domain adaptive filters. 
The NRLM algorithm with p-modulus and q-norm makes 
adaptive filters fast convergent and robust against two types 
of impulse noise: one is found in observation noise and 
another at filter input. We develop theoretical analysis of 
the algorithm for calculating filter convergence. Through 
experiment with simulations and theoretical calculations, 
effectiveness of the proposed algorithm is demonstrated. 
We also find that the filter convergence does not critically 
depend on the value of p or q, allowing use of p = q = 
infinity that makes it easiest to calculate the p-modulus and 
q-norm. The theoretical convergence is in good agreement 
with the simulation results which validates the analysis. 
 

Index Terms—Adaptive filter, recursive least 
estimation, impulse noise, modulus, norm 
 

1. INTRODUCTION 
 
It is widely believed that adaptive filters consist of an 
essential part of the latest communication systems in 
practical applications. The LMS and NLMS algorithms are 
most popular adaptation algorithms used in many adaptive 
filters. These algorithms are intensively studied and attract 
many implementers for their excellent performance [1], [2]. 
However, their serious drawback is vulnerability to impulse 
noise. Impulse noise is found in practical adaptive filtering 
systems [3], [4]. Two types of impulse noise are identified: 
one is present in observation noise and another at filter input. 
It is known that the latter is often found in such applications 
as “active noise cancellation.” 
     The author has long been interested in such adaptation 
algorithms which make adaptive filters robust against both 
types of impulse noise stated above and also fast convergent 
in the presence of highly correlated filter inputs. He has 
sought and proposed robust adaptation algorithms and 
methods for improving the filter convergence speed [5]-[10]. 

     One of the effective algorithms for “de-correlation” is 
the Recursive Least Moduli (RLM) algorithm [6], from 
which we derive Normalized RLM algorithm. The NRLM 
algorithm is expected to be robust against both types of 
impulse noise and also realize fast convergence. 
     In the NRLM algorithm, we incorporate a modulus of 
error and a norm of filter input. In the paper, we derive a 
generalized modulus and a norm named p-modulus and q-
norm. For a complex number z = x + j y, we define p-
modulus by | z |p = (| x |p + | y |p)1/p (p≥1). | z |2 is the modulus 
usually denoted by | z |. For a complex vector x = [x0 ··· xk ··· 
xN–1]

T of length N, q-norm of the vector x is defined by || x ||q 
= [∑k=0

N–1| xk |
q]1/q (q≥1). || x ||2 is the Euclidean norm usually 

written as || x ||. Using the p-modulus of error and q-norm of 
filter input, we can derive a modified NRLM algorithm 
which is denoted by “qNRLpM” for short. 
      In this paper, through theoretical analysis and 
experiment, we examine performance of the qNRLpM 
algorithm in the presence of both types of impulse noise and 
correlated filter inputs. 
 

2. IMPULSE NOISE MODELS 
 
In this section, we describe stochastic models used for two 
types of impulse noise found in adaptive filtering systems. 
 
2.1. Impulsive Observation Noise 
 
Impulse noise found in the additive observation noise is 
often modeled as Contaminated Gaussian Noise (CGN) that 
is mathematically a combination of two independent 
Gaussian noise sources [11], i.e., Gaussian noise ν(0)(n) with 
variance σ2

ν
(0) and probability of occurrence pν

(0), and ν(1)(n) 
with σ2

ν
(1) and pν

(1), where n is the time instant. Note that 
pν

(0) + pν
(1) = 1 holds. Usually, σ2

ν
(1) >> σ2

ν
(0) and pν

(1) < pν
(0). 

The variance of CGN is given by σ2
ν = pν

(0)σ2
ν
(0) + pν

(1)σ2
ν
(1). 

For “pure” Gaussian noise, σ2
ν = σ2

ν
(0) and pν

(1) = 0. 
 
2.2. Impulse Noise at Filter Input [8] 
 
A “noisy” filter input b(n) with impulse noise added to the 
reference input a(n) is given by b(n) = a(n) + τ(n) νa(n), 
where τ(n) is an independent Bernoulli random variable 



taking 1 with probability pνa and 0 with 1 – pνa. The impulse 
noise νa(n) itself is assumed to be an independent White & 
Gaussian process with variance σ2

νa. 
 

3. NORMALIZED LEAST MEAN MODULUS 
ALGORITHM 

 
Define a cost function of the error as  

Le(n) = | e(n) | / || a(n) ||,  
where | e(n) | is the modulus of the error and || a(n) || is the 
Euclidean norm of the filter reference input vector a(n) = 
[a(n) ··· a(n–k) ··· a(n–N+1)]T. Taking the gradient of Le(n) 
with respect to the tap weight vector c(n), we derive a tap 
weight update equation for Normalized Least Mean 
Modulus (NLMM) algorithm [7] as given by  
          c(n+1) = c(n) + αc e*(n) / | e(n) | a(n) / || a(n) ||,     (1) 

in which αc is the step size and ( · )* denotes complex 
conjugate. The error e(n) = (n) + ν(n), where (n) = θH(n) 
a(n) is the excess error, θ(n) = h – c(n) is the tap weight 
misalignment vector, h is the response vector of an 
unknown system to be identified, and ν(n) is the observation 
noise. 
 

4. p-MODULUS AND q-NORM 
 
4.1. p-Modulus 
 
In this subsection, we define a generalized modulus of a 
complex number z = x + j y [9]. Define and denote  

| z |p = (| x |p + | y |p)
1/p     (p ≥ 1)  

which may be named “p-modulus.” Typical values of p for 
practical use are: p = 1, 2 and ∞. | z |2 is the modulus usually 
denoted by | z |. Note that | z |∞ = max{| x |, | y |} holds. 
     Next, assume that x and y are uncorrelated zero-mean 
Gaussian random variables with unit variance. Let us 
calculate expectations E(1/| z |p) and E(| z |2/| z |p

2). On the 
polar coordinates, using the PDFs of x and y, we find  

E(1/| z |p) = (π/2)1/2 ζ(p)  and  
                        E(| z |2/| z |p

2) = ζ2(p)  
with  

ζ(p) = (4/π) ∫0
π/4 (cospφ + sinpφ)–1/p dφ  and  

              ζ2(p) = (4/π) ∫0
π/4 (cospφ + sinpφ)–2/p dφ. 

Numerically calculated values of ζ(p) and ζ2(p) for some 
values of p are listed in Table 1 below. Ratios ζ2(p)/ζ(p) and 
ζ2(p)/ζ2(p) are also given in the table. 
 
           Table 1. ζ(p) and ζ2(p) versus p and ratios on ω. 
            p         ζ(p)            ζ2(p)  ζ2(p)/ζ(p)  ζ2(p)/ζ2(p)  
             1    0.793515    0.636620    0.8023     1.0110  
             2    1.000000    1.000000    1.0000     1.0000  
             8    1.111705    1.245815    1.1206     1.0080  
           32    1.121493    1.271285    1.1336     1.0108  
         128    1.122155    1.273113    1.1345     1.0110  
           ∞     1.122200    1.273240    1.1346     1.0110 
 

In the table above, we find that the ratio ζ2(p)/ζ(p) increases 
as p increases to converge to an upper bound. However, the 
ratio ζ2(p)/ζ2(p) takes a value 1 to 1.01 and does not 
critically depend on the value of p. 
 
4.2. q-Norm 
 
Let x = [x0 ··· xk ··· xN–1]

T be a complex-valued vector. Then, 
“q-norm” of the vector x is defined by  

|| x ||q = [∑k=0
N–1| xk |

q]1/q   (q ≥ 1) [10],  
where | xk | is the modulus of xk. Typical values of q are: q = 
1, 2 and ∞. For q = ∞, “infinity-norm (or ∞-norm)” is 
calculated as || x ||∞ = max{| x0 |, ··· | xk |, ··· | xN–1|}. 
     Next, let x = x(n) be a stationary zero-mean Gaussian 
process with uncorrelated real and imaginary parts, 
covariance matrix Rx = E[x(n)xH(n)]/2 and unit variance. 
We define the following expectations.  

ω(q) = E(1/|| x ||q)  and 
                            ω2(q) = E(1/|| x ||q

2). 
Generally, it is found difficult to calculate these 
expectations analytically. 
     In order to obtain ω(q) and ω2(q) approximately, we run 
simulations to calculate ensemble averages <1/|| x ||q> and 
<1/|| x ||q

2>, respectively, as listed in Table 2 below, where 
N = 32 and x(n) is an AR1 process with regression 
coefficient η = 0.9. In the table, ratios ω2(q)/ω(q) and 
ω2(q)/ω2(q) are also given. The number of samples of x is 
10 million. 
 
             Table 2. Simulation results and ratios on ω. 
      q     <1/|| x ||q>   <1/|| x ||q

2>   ω2(q)/ω(q)  ω2(q)/ω2(q)  
        1      0.02658      0.000753      0.0283         1.064  
        2      0.1363        0.01968        0.144           1.059  
        8      0.3813        0.1529          0.401           1.052  
       32     0.4311        0.1955          0.453           1.052  
      128    0.4348        0.1988          0.457           1.052  
       ∞      0.4350        0.1990          0.458           1.052 
 
From the results above, we learn that the ratio ω2(q)/ω(q) 
increases as q increases to converge to an upper bound, 
whereas the ratio ω2(q)/ω2(q) takes a value 1.05 to 1.06 and 
thus it does very weakly depend on q. 
 

5. NORMALIZED RECURSIVE LEAST MODULI 
ALGORITHM WITH p-MODULUS OF ERROR AND 

q-NORM OF FILTER INPUT 
 
In this section, we propose a new adaptation algorithm 
related to the NLMM algorithm described in Section 3. 
     In the tap weight update equation (1), we first replace the 
modulus | e(n) | by p-modulus | e(n) |p and the norm || a(n) || 
by q-norm || a(n) ||q, yielding “qNLMpM” algorithm. Next, 
we introduce a recursive least estimate of the inverse 
covariance matrix of the filter input as used in the well-
known RLS algorithm. 



             
            Fig. 1. Schematic diagram for qNRLpM algorithm. 
 
     The resulting tap weight update equation is given by  
  c(n+1) = c(n) + αc P(n) e*(n) / | e(n) |p · a(n) / || a(n) ||q, (2) 
where the estimate P(n) is iteratively calculated by either of 
the two methods below. 
           Method <A> (Indirect Method)  

                             P(n+1) = Q–1(n+1)                          (3a) 
with  
   Q(n+1) = λ Q(n) + 1 / | e(n) |p · a(n) aH(n) / || a(n) ||q, (3b) 
or  
           Method <B> (Direct Method)  
               P(n+1) = λ–1{P(n) – P(n) a(n) aH(n) P(n)  
                 / [λ | e(n) |p || a(n) ||q + aH(n) P(n) a(n)]},       (4) 
where λ is the forgetting factor. 
     The adaptation algorithm proposed above is Normalized 
Recursive Least Moduli Algorithm With p-Modulus of Error 
and q-Norm of Filter Input, denoted as “qNRLpM.” Fig. 1 
is a schematic diagram for the qNRLpM algorithm. 
 

6. PERFORMANCE ANALYSIS 
 
In this section, for ease of analysis, we assume absence of 
impulse noise. For ease of reading, only main results of the 
analysis are summarized, leaving the details out. 
 
6.1. Assumptions 
 
    A1: The number of tap weights N is sufficiently large. 
    A2: The filter reference input a(n) is a Gaussian process 
with covariance matrix Ra = E[a(n)aH(n)]/2 and variance 
σ2

a = E[| a(n) |2]/2. 
    A3: The filter input a(n) and the tap weights c(n) are 
mutually independent (Independence Assumption). 
    A4: The estimate P(n) is independent of e(n) and a(n). 
    A5: The error e(n) given a(n) is Gaussian distributed. 
 
6.2. Difference Equations for Tap Weight Misalignment 
 
From (2), we obtain an update equation for θ(n) given by  
    θ(n+1) = θ(n) – αc P(n) e*(n) / | e(n) |p · a(n) / || a(n) ||q  
whence we derive a set of difference equations for the mean 
vector m(n) = E[θ(n)] and the second-order moment matrix 
K(n) = E[θ(n)θH(n)]:  
                        m(n+1) = m(n) – αc p(n)  and  
           K(n+1) = K(n)  – αc [V(n) + VH(n)] + α2

c T(n),   (5) 

where p(n) = E[P(n)] E[e*(n)/| e(n) |p · a(n)/|| a(n) ||q], V(n) 
= E[P(n)] E[e*(n)/| e(n) |p · a(n)/|| a(n) ||q θ

H(n)], T(n)   
E[P(n)] Ta E[P(n)], and Ta = E[| e(n) |2/| e(n) |p

2 · 
a(n)aH(n)/|| a(n) ||q

2]. For N>>1, we calculate p(n) = E[P(n)] 
W(n) m(n) and V(n) = E[P(n)] W(n) K(n), where  
      W(n)  E[1/| e(n) |p ] (1/2)E[a(n)aH(n)]E[1/|| a(n) ||q]  
                   (π/2)1/2 ζ(p) ω(q) / [σe(n) σa] · Ra,  
                      Ta  ζ2(p) ω2(q) / σ2

a · 2Ra,  
σ2

e(n) = ε(n) + σ2
ν is the error variance, and we define 

Excess Mean Square Error (EMSE) by ε(n) = E[|(n)|2]/2 = 
tr[RaK(n)]. 
 
6.3. Calculation of E[P(n+1)] – Analysis of Method <A> 
 
From (3b), we derive a difference equation  

E[Q(n+1)] = λ E[Q(n)] + ΞQ(n),  
where, for N>>1,  
                                 ΞQ(n) = 2W(n)  
                   (2π)1/2 ζ(p) ω(q) / [σe(n) σa] · Ra. 
Having updated E[Q(n+1)], we approximately calculate in 
(3a) E[P(n+1)] = E[Q–1(n+1)]  E[Q(n+1)]–1. It is known 
that this E[P(n+1)] is less accurate than that calculated by 
the analysis of Method <B> in the next subsection. 
 
6.4. Calculation of E[P(n+1)] – Analysis of Method <B> 
 
From (4), we derive a difference equation  
             E[P(n+1)] =λ–1E[P(n)]{I – ΦP(n) E[P(n)]},  
where I is identity matrix and  
  ΦP(n) = E{a(n)aH(n)/[λ | e(n) |p || a(n) ||q+aH(n)P(n)a(n)]}. 
For N>>1, though details are not given, we finally obtain  
                  ΦP(n)  Sc[y(n)] / λ · ΞQ(n) [12],  
where we define a function  
    Sc(x) = (2/π)1/2 ∫0

∞ t / (t + x) · exp(–t2/2) dt   (x ≥ 0)  and  
           y(n) = 2 ζ(p) ω(q) tr{RaE[P(n)]} / [λ σe(n) σa].  
 
6.5. Initial Conditions 
 
For c(0) = 0, we have m(0) = h and K(0) = h hH. The initial 
value of the estimate matrix is usually assumed to be P(0) = 
P0 I, where P0  (π/2)1/2 ζ(p)/ζ2(p) · ω(q)/ω2(q) / (2αcN) that 
minimizes ε(1). 
 
6.6. Steady-State Solution 
 
As n → ∞, we derive, from (5), an equation  

K(∞) = (αc/2)W–1(∞)Ta E[P(∞)],  
where for Method <A> E[P(∞)]  λc ΞQ

–1(∞), and for 
Method <B> E[P(∞)]  λc ρP ΞQ

–1(∞). Here, λc = 1 – λ and 
ρP (>1) is a root of an equation ρP = λ / Sc[(2/π)1/2 λcNρP / λ]. 
Then, we can solve the steady-state EMSE  
                              ε(∞) = δ / (1 – δ) · σ2

ν  
with  

 δ = αc λc ρP π
–1[ζ2(p)/ζ2(p)] [ω2(q)/ω2(q)] N.      (6) 



Note here that on the RHS of (6) the ratio ζ2(p)/ζ2(p) in the 
first square bracket has a value 1 to 1.01 (see Table 1), and 
the ratio ω2(q)/ω2(q) in the second square bracket takes a 
value 1.05 to 1.06 (see Table 2). Thus, the steady-state 
EMSE for the proposed qNRLpM algorithm does not 
critically depend on the value of either p or q. We can even 
select p = q = ∞, for which it is easiest to calculate the p-
modulus of the error and the q-norm of the filter input. 
     For N = 32, an AR1 input with regression coefficient η = 
0.9, σ2

ν = 0.01, αc = 1 and λc = 2–10, we calculate ε(∞)  –
39.5 dB for p = q = 1, and ε(∞)  –39.6 dB for p = q = ∞. 
 

7. EXPERIMENT 
 
In this section, experiment is carried out with simulations 
and theoretical calculations of adaptive filter convergence 
using the qNRLpM algorithm. The following examples are 
prepared for the experiment. The simulation result is an 
ensemble average of squared excess error <|(n)|2>/2 over 
1000 independent runs of filter convergence. 
     Example #1 N = 32  
                        filter input: AR1 Gaussian process with  

σ2
a = 1 (0 dB) and η = 0.9  

                        “pure” Gaussian noise: σ2
ν = 0.01 (–20 dB)  

                        (a) p = q = 1, (b) p = q = 2, (c) p = q = 8,  
                        (d) p = q = 32, (e) p = q = 128, (f) p = q = ∞ 
                        for qNRLpM:  αc = 1, λc = 2–10  
                        simulated convergence 
     Example #2 N = 32  
                        filter input: same as in Example #1  
                        “pure” Gaussian noise: σ2

ν = 0.01 (–20 dB)  
                        (a) p = q = 1, (b) p = q = ∞ 
                        for qNRLpM:  αc = 1, λc = 2–10  
                        for qNLMpM: (a) αc= 2–9, (b) αc= 2–13  
                        analysis of Methods <A> and <B> 
     Example #3 N = 32  
                        filter input: same as in Example #1 
                        p = q = ∞  
                        for qNRLpM:  αc = 1, λc = 2–10  
                        Case 1: “pure” Gaussian noise  σ2

ν = 0.01  
                                    no impulse noise at filter input 
                        Case 2: CGN  σ2

ν
(0) = 0.01; pν

(0) = 0.9  
                                               σ2

ν
(1) = 10   ; pν

(0) = 0.1  
                                    no impulse noise at filter input  
                        Case 3: “pure” Gaussian noise  σ2

ν = 0.01  
                                    impulse noise at filter input  
                                               σ2

νa = 1000; pνa = 0.1  
                        Case 4: CGN as in Case 2  
                                    impulse noise at filter input  

as in Case 3  
                        analysis of Method <B> 
     For Example #1, simulated filter convergence for some 
values of p and q is given in Table 3. 
 
 

Table 3. Ensemble average <|(n)|2>/2 (dB) versus n. 
      n      p=q=1  p=q=2  p=q=8  p=q=32  p=q=128  p=q=∞ 
        0       0.5        0.4        0.3        0.4         0.5          0.3 
    200    –18.9    –18.8    –18.6    –18.6     –18.7      –18.6  
    400    –25.0    –24.6    –24.7    –24.5     –24.7      –24.6  
    800    –29.7    –29.6    –29.9    –29.7     –29.7      –29.9  
  1200    –32.0    –32.1    –32.2    –32.2     –32.4      –32.4  
  2000    –35.3    –35.3    –35.4    –35.3     –35.4      –35.4  
  4000    –38.7    –38.5    –38.5    –38.4     –38.4      –38.6  
  6000    –39.3    –39.2    –39.2    –39.1     –39.4      –39.3  
8000    –39.4    –39.3    –39.4    –39.2     –39.4      –39.5 

 
In Table 3, we observe that the filter convergence curves are 
almost the same for the above p and q. In fact, the filter 
convergence curves are indistinguishable if plotted on a 
graph. Generally, the filter convergence does not critically 
depend on any combination of p and q. 
     In Example #2, results of experiment are given in Fig. 2 
for p = q = 1 and in Fig. 3 for p = q = ∞. In the figures, 
theoretical convergence curves are calculated and drawn 
according to the analysis of Methods <A> and <B>, in 
comparison with simulation results. We observe that the 
theoretical convergence for Method <B> is more accurate 
than that for Method <A>. Also in the figures, theoretical 
convergence for the qNLMpM algorithm is plotted. We find 
that the convergence for the proposed qNRLpM algorithm 
is much faster than that for qNLMpM algorithm, showing 
the effectiveness of the recursive least estimation. 
     In Fig. 4, results for Cases 1 to 4 of Example #3 are 
shown for p = q = ∞. Case 1 is for “pure” Gaussian noise 
(no impulse noise). In Case 2, filter convergence in the 
presence of CGN is depicted, where we observe that the 
EMSE increase from Case 1 is only 1 dB. For Case 3 
(impulse noise at filter input) and Case 4 (both types of 
impulse noise), simulation results are plotted which 
demonstrate sufficient robustness of the qNRLpM algorithm 
against both types of impulse noise. 
     In general, the theoretically calculated convergence 
(analysis of Method <B>) is in good agreement with the 
simulated convergence that validates the analysis developed. 
 

8. CONCLUSION 
 
This paper has proposed a new adaptation algorithm named 
qNRLpM algorithm. Stochastic models for two types of 
impulse noise have been used. 
     Through performance analysis and experiment, we have 
found that the algorithm realizes fast convergent and robust 
adaptive filters in the presence of both types of impulse 
noise. We have also learned that the filter convergence 
behavior does not critically depend on the value of either p 
or q, allowing us to use ∞-modulus of the error and ∞-norm 
of the filter input. Note that ∞-modulus and ∞-norm are 
easiest to calculate. Theoretical convergence has been found 
sufficiently accurate that validates the analysis. 



             
Fig. 2. Adaptive filter convergence (Example #2, p = q = 1). 
 

             
  Fig. 3. Adaptive filter convergence (Example #2, p = q = ∞). 
 

             
Fig. 4. Adaptive filter convergence (Example #3, Cases 1 to 4). 
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