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ABSTRACT

In this paper a novel nonlinear loudspeaker compensation

technique is presented which is based on embedded convex

optimization. The aim is to compensate for the linear as well

as for the nonlinear perceptible distortions incurred in the

loudspeaker. To this end, a psychoacoustic model is adopted

and a convex optimization based problem formulation is

set up. In order to solve the resulting convex optimization

problems in a fast and reliable way, a projected gradient op-

timization method is proposed. From comparative objective

evaluation experiments, it is concluded that the proposed non-

linear loudspeaker compensation technique indeed improves

the average audio quality scores.

Index Terms— Sound perception, loudspeaker compen-

sation, nonlinear model, Hammerstein model, convex opti-

mization.

.

1. INTRODUCTION

Achieving a high perceived audio quality is undoubtedly a

main concern in the development of any audio reproduction

system. In general, the loudspeakers in such a system have a

non-ideal response introducing both linear and nonlinear dis-

tortions in the reproduced audio signal. This may result in a

significant degradation of the perceived audio quality [1].

Loudspeaker compensation techniques aim at reducing

the effects caused by the non-ideal loudspeaker characteris-

tics. The idea is to apply a digital compensation operation

in cascade with the audio reproduction channel to counter-

act the response errors and nonlinearities introduced by the

loudspeakers. Traditionally, loudspeakers have been mod-

eled by linear systems such as FIR filters, IIR filters, warped
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filters or Kautz filters. The aim of linear loudspeaker com-

pensation (also known as equalization) techniques is then to

identify/approximate and apply the inverse digital filter to the

audio signal prior to playback in order to reduce the linear

distortions [2].

However, the small and low-cost loudspeakers that are

ubiquitous in mobile devices are also causing a high level

of nonlinear distortion, especially at high playback levels.

This nonlinear behaviour can be taken into account by using

nonlinear loudspeaker models such as Hammerstein models,

Wiener-Hammerstein models and Volterra models. The aim

of nonlinear loudspeaker compensation techniques is then to

invert the nonlinear system under consideration [3]. This is in

general a computationally expensive approach.

In this paper, a novel nonlinear loudspeaker compensa-

tion technique is presented, which aims to compensate for the

linear as well as for the nonlinear distortions incurred in the

loudspeaker. The novelty compared to existing loudspeaker

compensation techniques is twofold. Firstly, a convex opti-

mization procedure is embedded into the algorithm to carry

out the nonlinear loudspeaker compensation. Approaches

based on embedded convex optimization have been successful

in related signal processing applications, e.g. [4] [5]. Sec-

ondly, the proposed compensation technique is perception-

based: a psychoacoustic model which captures knowledge

about the human perception of sounds is employed, and al-

lows to minimize the resulting perceptible distortion.

This paper is organized as follows. In Section 2, the non-

linear loudspeaker compensation technique is introduced in a

framework of embedded convex optimization and the inclu-

sion of a psychoacoustic model is discussed. In Section 3, a

projected gradient optimization method is presented for solv-

ing the convex optimization problems at hand in a fast and

reliable way. In Section 4, simulation results are given for a

comparative audio evaluation experiment. Finally, in Section

5, some concluding remarks are presented.

2. NONLINEAR LOUDSPEAKER COMPENSATION

The aim of nonlinear loudspeaker compensation is to precom-

pensate for the linear as well as for the nonlinear distortions

incurred in the loudspeaker. Figure 1 shows the operation of
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the proposed compensation technique. Frame-by-frame pro-

cessing of the digital input audio signal x[n] is applied, us-

ing non-overlapping input frames xm ∈ RN ,m = 0, 1...M .

The loudspeaker is modeled by a Hammerstein model, i.e.

a memoryless nonlinearity with a linear region [−U,U ], fol-

lowed by a linear finite impulse response (FIR) filter with im-

pulse response h[n], n = 0...L − 1. Before it is fed into the

loudspeaker, the input frame xm passes through the nonlin-

ear loudspeaker compensation block. For a given input frame

xm, the nonlinear loudspeaker compensation consists of the

following steps:

1. Calculate the instantaneous global masking threshold

tm ∈ R
N
2
+1 of the input frame xm using a psychoa-

coustic model (see Subsection 2.2).

2. Calculate a compensated input frame v∗m ∈ R
N as the

solution of a convex optimization problem, such that

the resulting output frame y∗m is perceptually as close

as possible to xm (see Subsection 2.1).

2.1. Optimization problem formulation

The core of the proposed nonlinear loudspeaker compensa-

tion technique consists in calculating the solution of a convex

optimization problem for each input frame. The optimal com-

pensated input frame v∗m is calculated from the knowledge of

the input frame xm and its instantaneous masking threshold

tm. A necessary constraint on v∗m is that the amplitude of

the samples be contained within the linear region [−U,U ] of

the memoryless nonlinearity. The objective function reflects

the amount of perceptible distortion added between ym and

xm. The optimization problem is then formulated as an in-

equality constrained frequency domain weighted L2-distance

minimization, i.e.1

v∗m = argmin
vm∈RN

f(vm) s.t. − u ≤ vm ≤ u

= argmin
vm∈RN

1

2N

N−1
∑

i=0

wm(i)|Ym(ejωi)−Xm(ejωi)|2

s.t. − u ≤ vm ≤ u
(1)

where ωi = (2πi)/N represents the discrete frequency vari-

able, Xm(ejωi) and Ym(ejωi) are the discrete frequency com-

ponents of xm and ym respectively, the vector u = U.1N
contains the upper amplitude level of the linear region (with

1N ∈ R
N a vector of ones), and wm(i) are the weights of a

perceptual weighting function to be defined in subsection 2.2.

1Superscripts T and H denote the transpose and the Hermitian transpose,

respectively.

Fig. 1. Perception-based nonlinear loudspeaker compensa-

tion: schematic overview

The optimization problem (1) can be rewritten as follows,

v
∗

m = argmin
vm∈RN

1

2
(ym − xm)H D

H
WmD

︸ ︷︷ ︸

,Qm

(ym − xm)

s.t. − u ≤ vm ≤ u

= argmin
vm∈RN

1

2
(Hvm + H̃v

∗

m−1 − xm)T Qm (Hvm + H̃v
∗

m−1 − xm)

s.t. − u ≤ vm ≤ u

= argmin
vm∈RN

1

2
v
T
m H

T
QmH

︸ ︷︷ ︸

Hessian Am

vm + (HT
Q

T
m(H̃v

∗

m−1 − xm)
︸ ︷︷ ︸

Gradient bm

)T vm

s.t. − u ≤ vm ≤ u

(2)

where D ∈ CN×N is the unitary Discrete Fourier Transform
(DFT) matrix, Wm ∈ RN×N is a diagonal weighting matrix
with positive diagonal elements wm(i), obeing the symmetry

property wm(i) = wm(N − i) for i = 1, 2, ..., N2 − 1, and the

matrices H ∈ RN×N and H̃ ∈ RN×N are defined as

H =
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It is remarked that the objective function in (2) is a quadratic

function and that the constraint functions are affine, hence op-

timization problem (2) constitutes a quadratic program (QP).

As it can be shown that the Hessian matrix Am = HTQmH
in (2) is guaranteed to be real and positive definite, the opti-

mization problem is a strictly convex quadratic program.
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2.2. Perceptual weighting function

In order for the objective function in optimization problem (1)

to reflect the amount of perceptible distortion added between

input frame xm and output frame ym, the perceptual weight-

ing function wm must be constructed judiciously. The ratio-

nale behind applying signal-dependent weights in the sum-

mation (1) is the psychoacoustic fact that distortion at certain

frequencies is more perceptible than distortion at other fre-

quencies, and that the relative perceptibility is mostly signal-

dependent. Two phenomena of human auditory perception

are responsible for this.

A first phenomenon is the absolute threshold of hearing,

which is defined as the required intensity (dB) of a pure tone

such that an average listener will just hear the tone in a noise-

less environment. The absolute threshold of hearing is a func-

tion of the tone frequency and has been measured experimen-

tally. A second phenomenon is simultaneous masking, where

the presence of certain spectral energy (the masker) masks the

simultaneous presence of weaker spectral energy (the mas-

kee), or in other words, renders it imperceptible. Combining

both phenomena, the instantaneous global masking threshold

of a signal gives the amount of distortion energy (dB) at each

frequency bin that can be masked by the signal.

In this framework, consider the input frame xm to act as

the masker, and ym − xm as the maskee. By selecting the

weights wm(i) in (1) to be exponentially decreasing with the

value of the global masking threshold of xm at frequency bin

i, the objective function effectively reflects the amount of per-

ceptible distortion introduced. This can be specified as

wm(i) =

{

10−αtm(i) if 0 ≤ i ≤ N
2

10−αtm(N−i) if N
2 < i ≤ N − 1

(5)

where tm is the global masking threshold of xm (in dB). Ap-

propriate values of the compression parameter α have been

determined to lie in the range 0.04-0.06.

The instantaneous global masking threshold tm of an

input frame xm is calculated by using part of the ISO/IEC

11172-3 MPEG-1 Layer 1 psychoacoustic model 1 [6]. The

major steps in its computation are the following:

1. Spectral analysis and SPL normalization: A high-

resolution spectral estimate of the input frame is cal-

culated. After a normalization operation and a Hann

windowing operation on the input signal frame, the

PSD estimate is obtained through a 512-point Fast

Fourier Transform (FFT).

2. Identification of tonal and non-tonal maskers: The out-

put of the FFT is used to determine relevant tonal and

non-tonal maskers in the spectrum of the audio signal.

3. Calculation of individual masking thresholds: an indi-

vidual masking threshold is calculated for each masker

in a decimated set of tonal and non-tonal maskers, using

fixed psychoacoustic rules. Essentially, the individual

masking threshold depends on the frequency, loudness

level and tonality of the masker.

4. Calculation of global masking threshold: Finally, the

global masking threshold is calculated by a power-

additive combination of the tonal and non-tonal indi-

vidual masking thresholds, and the absolute threshold

of hearing.

3. FAST PROJECTED GRADIENT OPTIMIZATION

The core of the nonlinear loudspeaker compensation tech-

nique described in Section 2 consists in the solution of suc-

cessive instances of the convex quadratic optimization prob-

lem (2). The focus of this section is on the class of projected

gradient methods for solving the convex QPs. In Subsection

3.1, the standard projected gradient method is introduced. In

Subsection 3.2, an improved projected gradient method is pre-

sented, which reaches an optimal convergence.

3.1. Standard projected gradient method

In each iteration of the standard projected gradient method,

first a step is taken along the negative gradient direction of

the objective function, after which the result is orthogonally

projected onto the convex feasible set, thereby maintaining

feasibility of the iterates. A low computational complexity

per iteration is the main asset of projected gradient methods,

provided that the orthogonal projection onto the convex fea-

sible set and the gradient of the objective function can easily

be computed.

Introducing the notation vkm for the kth iterate of the mth

frame, the main steps in the (k+1)th iteration of the projected

gradient method can be written as follows:

• Take a step of stepsize skm along the negative gradient di-

rection :

ṽk+1
m = vkm − skm∇f(vkm) (6)

where the gradient is computed as

∇f(vkm) = HTQT
m(Hvm + H̃v∗m−1 − xm) (7)

• Project ṽk+1
m orthogonally onto the convex feasible set Ω

of (2), which is defined as

Ω = {vm ∈ R
N | − u ≤ vm ≤ u} (8)

An orthogonal projection ΠΩ(ṽ
k+1
m ) onto Ω can be shown

to come down to performing a simple componentwise hard

clipping operation (with lower bound −U and upper bound

U ), i.e.

vk+1
m = ΠΩ(ṽ

k+1
m ) = argmin

vp∈Ω

1

2
‖vp − ṽk+1

m ‖22 (9)
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Algorithm 1 Optimal projected gradient method

Input xm ∈ RN , v∗m−1 ∈ RN , v0m = c0m ∈ Ω, γ0
m ∈ (0, 1),

U , h, Wm

Output v∗m ∈ RN

1: Calculate Lipschitz constant Cm [using (13)]

2: Calculate convexity parameter µm [using (14)]

3: κm = Cm

µm

4: k = 0
5: while convergence is not reached do

6: ṽk+1
m = ckm − 1

Cm
∇f(ckm) [using (7)]

7: vk+1
m = ΠΩ(ṽ

k+1
m ) [using (10)]

8: Calculate γk+1
m from (γk+1

m )2 = (1 − γk+1
m )(γk

m)2 +
κmγk+1

m

9: δkm =
γk
m(1−γk

m)

(γk
m)2+γ

k+1
m

10: ck+1
m = vk+1

m + δkm(vk+1
m − vkm)

11: k = k + 1
12: end while

13: v∗m = vkm

where

vk+1
m (i) =







−U if ṽk+1
m (i) < −U

ṽk+1
m (i) if −U ≤ ṽk+1

m (i) ≤ U
U if ṽk+1

m (i) > U.
, i = 0...N−1

(10)

3.2. Optimal projected gradient method

In this subsection, a projected gradient optimization method is

presented that reaches an optimal convergence for the class of

convex optimization problems with strongly convex objective

functions. This method was first proposed in [7] and variants

of the method have been applied in diverse applications, e.g.

real-time clipping of audio signals [8].

Algorithm 1 summarizes the optimal projected gradi-

ent optimization method. In each iteration, a standard pro-

jected gradient step is performed on a potentially infeasible

weighted sum of two previous feasible iterates. Knowledge

of the Lipschitz constant Cm of the gradient ∇f and the con-

vexity parameter µm of f on the set Ω is assumed. In order to

establish Cm and µm for optimization problem (2), the next

two lemmas are proposed.

Lemma 3.1. (cfr. [7]) Let function f be twice continuously

differentiable on set Ω. The gradient ∇f is Lipschitz contin-

uous on set Ω with Lipschitz constant C if and only if

||∇2f(z)|| ≤ C , ∀z ∈ Ω (11)

Lemma 3.2. (cfr. [7]) Let function f be twice continuously

differentiable on set Ω. The function f is strongly convex on

set Ω with convexity parameter µ if and only if there exists

µ > 0 such that

∇2f(z) ≥ µI , ∀z ∈ Ω (12)

0.0

-1.0

-2.0

-3.0

-4.0

Imperceptible

Perceptible but not annoying

Slightly annoying

Annoying

Very annoying

Fig. 2. The ITU-R five-grade impairment scale

Using Lemma 3.1, it is proved that the Lipschitz constant

Cm can be computed as

Cm = ||Am|| = max
1≤i≤N

λi(Am)

= max
1≤i≤N

λi(H
HDHWmDH) (13)

where λi(Am), i = 1...N , denote the eigenvalues of Am.

Using Lemma 3.2, it is proved that the convexity parame-

ter µm can be computed as

µm = min
1≤i≤N

λi(Am)

= min
1≤i≤N

λi(H
HDHWmDH). (14)

4. SIMULATION RESULTS

For audio quality evaluation purposes, a test database consist-

ing of 8 audio excerpts was compiled (see Table 1 for details).

A first set of excerpts (numbers 1-5) was extracted from dif-

ferent commercial audio CDs. A second set of excerpts (num-

bers 6-8) was extracted from an ITU CD-ROM associated to

Recommendation BS.1387-1 [14].

The loudspeaker was modeled with a Hammerstein

model, using a hard clipping nonlinearity with linear re-

gion [−U,U ] and a 5th-order lowpass filter with impulse

response h =
[

1 0.7 0.5 0.3 0.1
]

T . Each audio

signal in the test database was passed through the Ham-

merstein loudspeaker model, with and without performing

a preceding perception-based nonlinear loudspeaker com-

pensation step. The following parameters were used for

nonlinear loudspeaker compensation: N = 512, α = 0.04,

and using κm iterations of Algorithm 1 for all instances of

optimization problem (2), such that the solution accuracy

ǫ = f(vκm
m )− f(v∗m) = 10−12 . Simulations were performed

for five different degrees of nonlinear loudspeaker distortion

PLD. The parameter U was set such that the amplitude of the

input audio signal x[n] exceeded the linear region [−U,U ]
for PLD={90, 95, 97, 98, 99}% of the samples.

For each of a resulting total of 8×5×2=80 processed au-

dio signals, the PEAQ (Perceptual Evaluation of Audio Qual-

ity) [14] measure was calculated. The PEAQ ODG (Objective
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Table 1. Audio excerpts database used for comparative audio quality evaluation (16 bit mono at 44.1 kHz)

Nr. Name Texture Composition Style Duration [s] Samplestart Sampleend Origin

1 poulenc.wav polyphonic instrumental classical 17.8 400000 1183000 [9]

2 rhcp.wav polyphonic instrumental rock 9.8 468996 900000 [10]

3 pierle.wav polyphonic instrumental+vocal pop 11.7 2234000 2750000 [11]

4 chopin.wav monophonic instrumental classical 17.8 50000 836200 [12]

5 kraftwerk.wav polyphonic instrumental electronic 17.2 7480000 8240000 [13]

6 breftri.wav monophonic instrumental classical 19.7 1 869675 [14]

7 crefsax.wav monophonic instrumental classical 10.9 1 479026 [14]

8 grefcla.wav monophonic instrumental classical 6.9 1 302534 [14]

90 92 94 96 98 100
−4

−3.5
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−2.5

−2

−1.5
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−0.5

0

P
LD

 [%]

M
e
a
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E
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 O

D
G

 

 

without compensation

with compensation

Fig. 3. Mean PEAQ ODG for audio signals processed with

and without perception-based nonlinear loudspeaker compen-

sation, as a function of the degree of nonlinear loudspeaker

distortion PLD.

Difference Grade) has a range between 0 and - 4, correspond-

ing to the ITU-R impairment scale depicted in Figure 2.

In Figure 3, the average PEAQ ODG score over all 8 audio

signals is plotted as a function of the degree of nonlinear loud-

speaker distortion PLD. A monotonically increasing average

audio quality score is observed for increasing PLD. Clearly,

including the perception-based nonlinear loudspeaker com-

pensation is seen to improve the average objective audio qual-

ity score significantly, and this for all considered degrees of

nonlinear loudspeaker distortion2.

5. CONCLUSION

In this paper a novel nonlinear loudspeaker compensation

technique was presented. By including a psychoacoustic

model and embedding convex optimization into the algo-

rithm, it was possible to minimize the perceptible distortion.

2Processed audio signals from this simulation are available online on

http://homes.esat.kuleuven.be/∼bdefraen/.

A fast projected gradient optimization method was proposed

for solving the resulting convex optimization problems. Com-

parative objective evaluation experiments have shown that the

proposed nonlinear loudspeaker compensation improves the

average objective audio quality score, and this for different

degrees of nonlinear loudspeaker distortion.
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