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ABSTRACT

Real-time streaming data takes on distinct visible patterns,
known as regimes, as a result of changing external influences.
Regimes corresponding to hazardous states, such as turbulent
flow in oil pipelines or patients experiencing heart arrhyth-
mias, must be identified quickly and accurately by on-line de-
tection algorithms. In this paper, we propose a modification
to the mixture of experts framework, which is traditionally
used to model piecewise stationary time series. Our proposed
modification allows experts to produce features specific to
their designated regimes, rather than being limited to predic-
tion error. This approach provides the flexibility to update the
mixture modularly as new regimes emerge without the bur-
den of retraining the entire mixture, as is typical in traditional
classifiers. Our approach is tested on flow rate data from an
oil and gas application, as well as detecting heart arrhythmias
from electrocardiogram (ECG) signals. It outperforms tradi-
tional classification approaches both in terms of error rate and
detector delay.

Index Terms— Detection, streaming data, mixture of ex-
perts

1. INTRODUCTION

In the problem of regime detection, or the related problem
of anomaly detection [1], the goal of an algorithm is to label
each sample of a time series as belonging to one of various
regimes. When a data set includes several distinct regimes, it
is difficult to capture it with a single model, or select a single
set of discriminative features across regimes. As the algo-
rithm has to detect different regimes, interference effects can
lead to slow learning and poor generalizability [2]. Further-
more, in the on-line setting, traditional classifiers relying on
joint distributions between classes must completely retrain,
even if changes occur to only a single class.

In this setting, it is natural to decompose the problem into
simpler sub-problems. The mixture of experts (ME) [2] is one
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approach consisting of an ensemble of experts, each one be-
ing an adaptive model with parameters tuned specifically to
a single regime. The experts are linked by a gating network
which stochastically selects the expert which best models the
input. The gate selects the expert based on hard competition
over their single step prediction errors. The parameters of the
expert that wins the competition are adjusted with the error.
At the outset, the user need only have an approximate idea
of the number of regimes present in the time series. The ex-
perts are initialized with small random parameters. Thus, a
complicated time series can be modelled by distributing re-
sponsibility amongst an ensemble of experts.

The ME is useful for modelling data composed of dis-
tinct regimes, and it is our goal to modify it for use in the
classification problem of regime detection. This modification
requires associating labelled training data with each expert,
rather than the unsupervised way in which experts train in the
standard ME formulation. Furthermore, the expert and gating
network must be redefined to work with features more general
than single step prediction error.

In this paper, we propose a new framework for the mixture
of experts. This paper is organized as follows: In Section 2
we present ME for the detection problem with a novel mod-
ification to allow greater freedom in the choice of experts.
In Section 3 we provide an illustrative example of the mod-
ified ME on real-world oil pipeline data, by describing three
experts used in our framework. In Section 4, we apply the
modified ME approach to classification of electrocardiogram
signals to detect heart arrhythmia in patients.

2. MODIFIED ME FOR REGIME DETECTION

In regime detection, the classifier has access to labelled train-
ing samples from each regime. Therefore, to modify the ME
for classification, the experts are trained a priori. Each expert
then has a known association with a particular regime. Then
during testing, unlabelled samples are assigned to the regime
represented by the expert which wins the competition. A sec-
ond modification must be made, allowing for more general
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experts. For classifying regimes it may be difficult or unnec-
essary to model the time series. Rather, we wish to extract a
characterizing feature specific to that regime. For example, in
an oscillatory regime it may be best to work with a spectral
feature, while in a highly specialized application the features
may be designed with considerable expert knowledge.

To satisfy these requirements, we redefine the expert to be
an entity which produces a measure of association between a
given testing sample and its training set. In the case of the
standard ME, the association measure is the single step pre-
diction error, which characterizes how well the current sample
fits the training data as captured in the expert’s model parame-
ters. Other examples of association measures include nearest
neighbor distances, correlations, and likelihood ratios. Com-
petition amongst experts will then proceed over their associa-
tion measures.

Note that we cannot directly compete over the associa-
tion measures in a fair manner. Each expert, i, generates an
association measure ai, which may not even share the range
of the association measures of other experts. For instance, if
one expert produces a rank statistic (positive integer), while
another produces a probability in [0, 1], the latter will always
win the competition. To overcome this issue, we build an em-
pirical probability density from the association measures of
the training samples for each regime. For regime i, this is
f(a|i). When a new sample arrives we compute the associa-
tion measure for each class, ai, and the classification decision
is then given by the maximum likelihood class

argmaxif(ai|i).

The likelihood provides a measure of expert accuracy that is
not dependent on the particular methods used by the expert.

The benefit of the modified ME framework is the decision
making through competition. Competition across experts pro-
vides modularity, which is imperative in the streaming data
setting. The experts can be designed separately, which al-
lows new experts to be inserted into the mixture at any time
without requiring changes in any of the other experts. Addi-
tionally, the decision system is not sensitive to the number of
experts, nor their particular features. If a regime no longer ap-
pears, the competition is unaffected. Small likelihoods from
all experts indicate the appearance of a new regime, signalling
that a new expert should be implemented. In existing classi-
fication approaches, the features are selected a priori, hoping
that they will be discriminatory for all regimes; present and
future. Therefore, complete retraining is required when new
regimes appear.

3. APPLICATION: OIL FLOW-RATE DATA FROM
OFF-SHORE BORE-WELLS

We applied our modified ME framework to oil flow rates from
sensors placed in a bore-well. The measurements are from a

Fig. 1: The high amplitude oscillation (top), low amplitude
oscillation (middle), and no oscillation(bottom) regimes.

single well, recorded by a single sensor located at the surface
of the sea, at 30 second intervals . This data is composed
of many regimes, but here we will consider three of them
(Figure 1). The first regime, characterized by high amplitude
oscillation (HAO), consists of triangular oscillations with a
period of 30 samples. The second characterized by low am-
plitude oscillation (LAO) consists of noisy oscillations at the
same frequency superimposed on a normal time series. The
third regime is simply a time series with no oscillation (NO).

Since the HAO oscillations are nonstationary, yet have
very distinguishable structure, we chose to use a time em-
bedding to capture the periodicity explicitly without the need
for a model. The time embedding is a mapping,

n 7→ (xn, xn−τ , · · · , xn−[m−1]τ ) = xn,

where n is the time, xn is the time series value at n, m is
the embedding dimension, and τ is the time delay. The jus-
tification for this embedding comes from Takens’ time delay
embedding theorem [3], which states that the phase space of
a high dimensional dynamical system can be reconstructed
from the time embedded vectors obtained from a time series
of observations from this system. The vectors xn preserve dy-
namical invariants of the dynamical system as long as τ andm
are chosen appropriately [4]. For this test m = 4 and τ = 3.
The time embedding captures the triangular oscillations with
only a few time lagged samples, which leads to a detector
that can respond quickly to transitions between regimes. The
training data for this regime was time embedded, forming a
trajectory. For unlabelled streaming samples, we construct the
appropriate time embedding vectors and compare a trajectory
segment of these vectors of length T with the trajectory seg-
ments of the training set. This comparison is made with the
correntropy function [5]. For the streaming length T trajec-
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tory segment at time n, Yn, and an arbitrary length T training
set trajectory, X, the correntropy function, ν, is denoted by

ν̂(X,Yn) =
1

T

T−1∑
i=0

Gσ (||X(i)−Yn(i)||)

where Yn(i) is the ith element of the trajectory segment, and
Gσ is the Gaussian kernel with bandwidth σ. If F is the set
of training trajectory segments, then the association measure
we use for this expert is

a = 1− min
X∈F

ν̂(X,Yn).

The NO regime is stationary only on relatively small time
scales, and is very nicely modelled by a simple linear adaptive
filter, with filter coefficients tuned by the least-mean-squares
(LMS) learning rule

wn+1 = wn + ηe(n)x(n),

where wn is the length p vector of filter coefficients at time
n, η is the learning rate, e(n) is the prediction error at time n,
and x(n) is the vector [x(n), x(n− 1), · · · , x(n− p+ 1)]T .
Since this is a predictive model, we use the magnitude of the
one-step prediction error as an association measure. When
this expert wins the competition, the error is used to tune the
filter coefficients with LMS. This expert can therefore track
gradual changes of the regime.

The LAO regime is composed of noisy oscillations of ap-
proximately the same frequency as the triangular oscillations,
superimposed on a time series similar to the NO regime. We
apply the short-time Fourier transform (STFT) to the stream-
ing data, and use the power spectral value at the oscillation
frequency as the association measure for this regime. We used
a Hamming window that was 32 samples in length. The win-
dow slides through the time series each shifted by one time
unit, producing one feature value for each streaming sample.
The spectral component of the oscillation frequency is a good
characterizing feature of the noisy oscillations, as we only
know that LAO is composed of low amplitude oscillations of
a known frequency. The time series is first bandpass filtered
to remove trends and noise.

We tested the modified ME with the aforementioned ex-
perts on a test set composed of 26, 709 samples (2̃4 hours)
of real oil pipeline data, with 1000 training samples allocated
to each regime. A segment of the test set and labels given
by the modified ME detector are seen in Figure 2. We se-
lected 12 regime transitions (4 transitions to each regime) and
measured the detector delay and the error rate. The detector
delay is defined as the number of samples that elapse after the
change of a regime until the new regime is detected. The error
rate is the ratio of detection errors to total samples, following
this detector delay period. The total error rate and detector
delay, averaged over the 12 transitions, is shown in Table 1.

Fig. 2: Two segments of the testing data, color-coded to illus-
trate the true regime label. The color bar below the time series
represents the regime decision generated by the modified ME
detector.

Error Rate Average Delay
Modified ME 3.22% 8.4

STFT 3.37% 14.2
State Space 6.26% 3.4

Table 1: The performance the modified ME versus classifica-
tion based on a spectral feature and competition amongst state
space detectors. Average delay is in the units of samples.

Some statistics of the delay time for the ME detector in each
regime are given in Table 2.

We compare the modified ME with a maximum likelihood
classification approach using only the STFT spectral feature
and with the standard mixture of experts, with each expert
using the same time embedding feature as the HAO, as dis-
cussed earlier. The STFT coefficient is a discriminatory fea-
ture, which is reflected by its low error rate of 3.37%. How-
ever, as we consider a window of 32 past samples, its detector
delay is high at 14.2 samples. The state space detectors con-
sider fewer past data points and therefore have a shorter de-
tection delay at 3.4 samples. This model is better suited to the
dynamic oscillatory regime, and hence its error rate is higher
at 6.26%. The modified ME combines the strengths of both
methods and boasts the lowest error rate, 3.22%, as well as a
short delay of 8.4 samples.

4. APPLICATION: ECG BEAT DETECTION

We consider another important regime detection problem, the
automatic classification of cardiac beat types from electrocar-
diogram (ECG) signals. There are many beat types that may
be identified from the ECG, including normal beats and a vari-
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Modified ME Delay Stats
Regime Tri. Osc. Noisy Osc. Stoch.
Mean 14.5 3.5 7.5
Min 1.0 1.0 5.0
Max 31.0 6.0 11.0
Std. 14.0 2.9 2.6

Table 2: An evaluation of the delay times for the modified
ME detector for transitions to each of the three regimes.

ety of irregularities such as premature ventricular contraction
and atrial premature contractions as seen in Figure 3. The
real-time detection of these abnormal beats is potentially life-
saving in a clinical setting, as beat irregularities are used to
diagnose heart arrhythmias, myocardial infarctions, ventricu-
lar hypertrophy, and other health problems. The ECG signal
of a normal beat has a distinctive structure consisting of five
successive deflections in amplitude; the so-called P, Q, R, S,
and T waves. Attributes such as the time duration of the QRS
complex and the R amplitude are useful defining character-
istics of the different types of beats. Existing beat detection
methods first extract these time and amplitude dependent fea-
tures. Once the features are obtained, a variety of methods
are applied to make a detection decision. Some techniques
include decision trees, linear discriminant analysis, artificial
neural networks, hidden Markov models, and template match-
ing [6].

ECG beat detection is a fundamentally challenging prob-
lem. In an ECG, the morphology of a beat type will not re-
main fixed. Intra-patient, and inter-patient variability is quite
pervasive and pose modelling challenges. Therefore, a detec-
tor must accommodate beats which differ from the training
set. Secondly, each patient will have characteristic beat mor-
phologies and a well-trained detector may fail when operat-
ing on a new subject. For these reasons, adaptive methods
are desirable, as they can quickly learn to accommodate new
patients and their unique beat morphologies.

Our modified ME approach satisfies the needs of an ECG
classifier. To accommodate a new patient, annotated training
data is added as it is made available. If this patient has a
type of beat not previously seen, a small training set from this
regime is obtained as in the case of the oil flow, and a new
expert is added to the mixture.

A mixture of experts framework was used for ECG beat
detection in [6], which provides grounds for comparison. In
this approach, decision responsibility is split between global
and local experts. Global experts are classifiers trained on a
large training set composed of many patients. To adapt to a
single patient’s unique characteristics, a local expert classifier
is trained on a small segment of that patient’s annotated ECG
data. A gating network dynamically weights the classification
decisions of the global and local expert.

We use the well-known MIT/Beth Israel Hospital (BIH)
Arrhythmia Database available on the PhysioBank archives

[7]. This database is composed of 2-channel ECG signals.
For each patient, there is 30 minutes of ECG, with a sampling
rate of 360 Hz. However, we downsampled the signal to 180
Hz. We use the upper channel signal, which was acquired
through a modified limb lead (MLL) with electrodes attached
to the chest. The MIT/BIH Arrhythmia Database provides
ECG signals with each beat labelled by an expert cardiologist.
There are 19 types of beat annotations, as well as 22 types of
non-beat annotations, including rhythm annotations.

Testing protocol is carried out in accordance with Ameri-
can Association of Medical Instrumentation (AAMI) protocol
[8] and follow the testing procedure of Hu et al. [6] for com-
parison. The goal is to place each beat in one of four more
general categories, into which the beat annotations fall.

To employ the modified ME we must select the most nat-
ural feature for each known regime. In this case the signal
structure of the QRS complex is the essential defining com-
ponent of the beat of interest. Following Hu et al. we use the
annotations to find the R wave peak (highest local amplitude
point), and embed that R wave peak amplitude and the 6 ad-
jacent samples to its left and 10 adjacent samples to its right
into a 19 dimensional feature vector. We add a 20th dimen-
sion in the form of the RR interval, which is the time from the
previous R wave to the current R wave. We subtract the 19
amplitude components of the feature vector by the first com-
ponent, to align the ECG beats.

In our study, we consider 20 patients for training. The first
2.5 minutes of each patient’s ECG signal are used to build
the training set. The feature vector is extracted from each
beat in the training set, and the features are grouped by their
annotation index. We ensure that no more than 200 vectors
are stored for any one beat type, and randomly select 200 if
more than that many exists in the training set. There are 16
beat types overall in this set of data and therefore we have
16 experts, each one storing up to 200 feature vectors. This
is much less training data than that used by Hu et al., which
included 13 full 30-minute ECG records, in addition to the
20, 2.5 minute segments we used, without the 200 sample
limit we set.

Our association measure between a testing feature vec-
tor and the training set for a given beat type is the minimum
weighted Euclidean distance between the testing vector and
all of the training vectors of that beat type. We use leave-one-
out on each training set to compute these Euclidean distances
to build the empirical distributions. The expert that produces
the maximum likelihood is selected as the winner, and its cor-
responding beat type is then mapped to one of the four AAMI
groupings. We test our algorithm on the remaining 27.5 min-
utes of each patient’s ECG signal for 10 total patients.

The results are seen in Table 3. We compare to the results
of Hu et al. The modified ME outperforms Hu et al. in 6 of 10
trials, but has a slightly less average success rate. Note that
the modified ME is not tailored to ECG, and can perform on
par with highly specified algorithms.
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(a) Normal beat (b) Premature ventricular contraction (alternat-
ing with normal beat)

(c) Atrial premature contraction

Fig. 3: ECG of three sample beat types.

Detection Success Rate (%)
MIT/BIH Record # Modified ME Hu et al.

200 87.3 81.0
201 97.8 95.4
202 99.8 71.7
203 84.4 87.4
205 98.7 97.1
207 86.7 88.3
208 66.3 90.5
209 99.8 98.8
210 96.4 93.4
213 60.3 91.9
avg. 87.8 89.5

Table 3: Percent of successful detections, for the modified
ME and for the mixture of experts in [6].

5. CONCLUSION

The ME is a useful framework for modelling time series with
distinct regimes. However, the experts are limited to predic-
tive models, making the approach unsuitable for many real
world datasets which are noisy, nonlinear, and nonstationary.
We extended the ME by allowing an experts to be from a
larger class and other association measures. Competition is
based on the likelihoods of the association measure. In the oil
and gas example, the importance of being able to use a variety
of experts is seen, as the oscillatory regimes vary from deter-
ministic to stochastic regimes, requiring different approaches.
Furthermore, the freedom of choice in experts allows quick
detection of change points, with minimal detector delay. We
also tested the modified ME on an ECG beat detection appli-
cation. The flexibility in our method was demonstrated as the
modified ME was able to contend with a specialized formula-
tion of the mixture of experts for ECG, proposed by Hu et al.
Our algorithm performed better in 6 of 10 trials, while also
requiring much less training data.
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