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ABSTRACT
The use of multiple antennas in mobile devices provides en-
hanced data rates at the cost of increased power consumption.
The stochastic nature of the wireless propagation medium
and random variations in the utilization and operating en-
vironment of the device makes it difficult to estimate and
predict wireless channels and power consumption levels.
Therefore, we investigate a robust antenna subset selection
policy where the power-normalized throughput is assumed to
be drawn from an unknown distribution with unknown mean.
At each time instant, the transceiver decides upon the active
antenna subset based on observations of the outcomes of
previous choices, with the objective being to identify the op-
timal antenna subset which maximizes the power-normalized
throughput. In this work, we present a sequential learning
scheme to achieve this based on the theory of multi-armed
bandits. Simulations verify that the proposed novel method
that accounts for dependent arms outperforms a naı̈ve ap-
proach designed for independent arms in terms of regret.

Index Terms— Antenna selection, energy efficiency,
learning, multi-armed bandit.

1. INTRODUCTION

An increasingly standard approach towards achieving high
data-rate wireless communications is to deploy multiple an-
tennas at the mobile terminal, as reflected in current and forth-
coming cellular radio and WLAN standards. The application
of multiple-input multiple-output (MIMO) transmission tech-
niques such as spatial multiplexing and beamforming enable
significantly greater spectral efficiencies or reliability on both
the downlink and uplink [1]. However, the use of multiple an-
tennas at the mobile terminal comes with a cost of increased
RF circuit power consumption, since each antenna RF chain
is associated with a multiplicity of RF analog components
such as power amplifiers, filters, mixers, and ADC/DACs.
Since the mobile device is generally a battery-powered de-
vice, the indiscriminate use of multiple antennas (equiva-
lently, RF chains) will degrade the device life time and lead
to an earlier exhaustion of the battery lifetime. Thus, energy

efficiency of MIMO systems has been studied intensively in
the literature [2]- [4].

A potentially more energy-efficient approach would be to
dynamically activate a subset of the available antenna chains
so as to balance the data rate with the device power consump-
tion. Roughly speaking, this is achieved via receive antenna
subset selection on the downlink, and transmit antenna sub-
set selection at the transceiver on the uplink [5]. However, the
stochastic nature of the wireless propagation medium and ran-
dom variations in the utilization and operating environment of
the device makes it difficult to estimate and predict wireless
channels and power consumption levels. Therefore, we in-
vestigate a robust antenna subset selection policy where the
power-normalized throughput is assumed to be drawn from
an unknown distribution with unknown mean. At each time
instant, the transceiver decides upon the active antenna subset
based on observations of the outcomes of previous choices,
with the objective being to identify the optimal antenna sub-
set which maximizes the power-normalized throughput. In
this work, we present a non-parametric sequential learning
scheme to achieve this based on the theory of multi-armed
bandits (MABs).

To our best knowledge, such tools have not been applied
previously to resource optimization problems in MIMO sys-
tems with incomplete side information. A MAB approach to
antenna reconfiguration without analysis was given in [6]. A
different line of work in the domain of cognitive radio oppor-
tunistic spectrum access that has received a lot of attention
recently considers dynamic decisions by a single secondary
user when the underlying primary user behavior on each chan-
nel is a two-state Markov chain. This can be formulated as
a partially observable Markov decision process (POMDP),
and when the channels are independent, as a special class
of POMDP known as restless bandits [7]- [9]. Furthermore,
while [7]- [9] feature MABs with independent arms, we will
see that our case specializes to the less commonly studied
MAB with dependencies across arms.

The remainder of this work is organized as follows. Sec-
tion 2 introduces the multi-antenna transceiver system model.
The theory of multi-armed bandit problems and their appli-
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cation to antenna subset selection along with performance
bounds is presented in Section 3. A numerical example com-
paring the proposed and existing schemes is given in Sec-
tion 4, and we conclude in Section 5.

2. SYSTEM MODEL
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Fig. 1. Multiple receive RF chains (N total) in a multi-
antenna transceiver.

The multiple-antenna system model is described in this
section. Consider a transceiver withN antennas, each with an
associated RF chain. At a given time interval, the transceiver
activates a subset of M antennas, M ≤ N , either on the up-
link or downlink in order to optimize a chosen performance
metric. Let S represent the set of all possible antenna subsets,
with cardinality

|S| =
N∑
i=1

(
N
i

)
.

Considering for example receive antenna subset selection as
in Fig. 1, the baseband signal received by the transceiver from
a T -antenna source can be written as

y = Hsx + n (1)

where Hs ∈ CM×T is the channel matrix corresponding to
an arbitrary antenna subset s ∈ S of cardinality Ks, x ∈
CT×1 is the information signal, and n ∼ CN (0,Z) is ad-
ditive colored Gaussian noise with covariance matrix Z. Let
E
{
xxH

}
= Q represent the transmit covariance matrix of

the source.
The ith row hi,s of the matrix Hs represents the vector

hi,s of channel coefficients between the T transmit antennas
and receive antenna i:

Hs =
[
hT1,s hT2,s . . . hTKs,s

]T
(2)

We can define the throughput or goodput as

Gs = (1− εs)Rt (3)

where Rt is the packet transmission rate of the source and
εs is the packet error rate associated with the chosen antenna
subset. The error probability εs is a function of the signal-
to-noise ratio at the transceiver. For reliable detection, the

maximum packet transmission rate Rt must be bounded by
the information-theoretic capacity defined as [5]

C = log2

∣∣∣I + HsQHH
s Z−1

∣∣∣
The corresponding transceiver power consumption is

Ps = Pb +
∑
k∈s

Pk (4)

where Pb is the shared baseband processing power consump-
tion and Pk is the power consumed by RF chain k in the set
s, both of which may also be stochastic. Therefore, a per-
formance metric that captures both data rate and energy effi-
ciency is the throughput normalized by the power consump-
tion:

Ts =
Gs
Ps
. (5)

For conventional throughput or rate maximization, it is
optimal to always use all antennas. However, this is not nec-
essarily true when the device power consumption is included
in the performance criterion [2]- [4].

The stochastic nature of the wireless propagation medium
and presence of co-channel interference (reflected in the as-
sumption of colored noise) makes it difficult to perfectly
estimate Hs at the receiver. Furthermore, random varia-
tions in the utilization and operating environment of the
transceiver hinders the prediction of the exact power con-
sumption. Therefore, we construct a robust antenna subset
selection policy where the ‘reward’ Ts is drawn from an un-
known distribution with unknown mean. At each time instant,
the transceiver decides upon the active antenna subset based
on past observations of the reward obtained from previous
choices, with the objective being to identify the optimal an-
tenna subset that maximizes the average power-normalized
throughput. In the next section, we present a non-Bayesian
sequential learning scheme to achieve this based on the theory
of multi-armed bandits.

3. MULTI-ARMED BANDIT FRAMEWORK

We now consider an abstraction of the antenna selection prob-
lem as follows. We first introduce some relevant background
on the theory of multi-armed bandits, and then specialize to
the specific problem considered in this work.

In the classic multi-armed bandit problem withK choices
or ‘arms’, a player must decide which one of the K arms to
play at each step in a sequence of trials so as to maximize
the long-term reward [7]. Every time he plays an arm, he re-
ceives a reward. The structure of the reward for each arm is
unknown to the player a priori, but in most prior work the
reward has been assumed to be independently drawn from a
fixed (but unknown) distribution. The reward distribution in
general differs from one arm to another, therefore the player
must use all his past actions and observations to essentially
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learn the quality of these arms (in terms of their expected re-
ward) so he can keep playing the best arm.

The multi-armed bandit embodies the classic trade-off be-
tween exploration and exploitation. This is because the player
needs to sufficiently explore all arms so as to minimize the
likelihood of settling upon an inferior one erroneously be-
lieved to be optimal. On the other hand, the player needs to
avoid spending too much time exploring the arms and maxi-
mize the time spent playing the optimal arm. In view of the
above, the performance of a decision policy is typically mea-
sured by the notion of regret, which is defined as the loss in
expected reward compared to that yielded by an ‘genie’ or
ideal policy with a priori knowledge of the reward distribu-
tions of each arm.

We now formalize the application of the MAB technique
to the energy-efficient antenna subset selection problem. Con-
sider a MAB where each of the |S| possible antenna subsets
is mapped to a virtual arm. The reward Xk(n) for arm k
at time n is drawn from an arbitrary unknown distribution
with unknown mean θk, which necessitates a non-Bayesian
learning approach. The rewards are allowed to be dependent
across arms, but are independent over time. Define θ∗ =
max(θ1, . . . , θ|S|), and

∆k = θ∗ − θk.

The regret obtained from any selection policy π is defined as

Rπ (n) = nθ∗ −
K∑
j=1

θjE {Tj (n)} (6)

where E(·) denotes expectation and Tj (n) is the cumulative
number of times arm j is played up to time n.

It is clear that the presence of the same antenna(s) in mul-
tiple subsets introduces dependencies across the rewards ob-
tained from the associated arms, unlike the independent arms
assumed in [7]- [10]. For example, the rewards obtained from
antenna subsets s1 = {1, 3, 4, 5} and s2 = {1, 2, 4, 5} are
highly correlated. In the limited prior work on MABs with de-
pendent arms, Mersereau et al. [11] consider a setting where
the expected reward is defined as a linear function of an ran-
dom variable, and the prior distribution is known, which does
not apply in our case. Gai et al. [12, 13] consider a combina-
torial cognitive radio channel allocation problem with an arm
defined as a specific user-to-channel map. The same user-
to-channel allocation present in different maps introduces de-
pendencies across arms in their model, but the key difference
is that they assume the reward from each individual user-to-
channel allocation is known, whereas we assume only the
cumulative reward for the entire arm (antenna subset) is ob-
served.

3.1. Naı̈ve Approach

In the first approach to the problem, it is possible to naı̈vely
reuse the existing solution in [10] where the arms are consid-

ered to be independent. Define the counters Ŷk, dk, that track
the sample mean of the rewards obtained from each arm, and
the number of times a particular arm is played, respectively,
which are updated at time n as

Ŷk (n) =

{
Ŷk(n−1)+Xs(n)
dk(n−1)+1 if arm k is played
θ̂k (n− 1) else

(7)

dk (n) =

{
dk (n− 1) + 1 if arm k is played
dk (n− 1) else (8)

At time n, the naı̈ve approach plays the arm that maxi-

mizes Ŷk +
√

2 lnn
dk

. This policy has a regret upper-bounded
as [10]

Rπ (n) ≤
∑

k:θj≤θ∗

8lnn

∆j
+

(
1 +

π2

3

) ∑
k:θj≤θ∗

∆j

 . (9)

The naı̈ve approach ignores dependencies across arms and
their associated rewards, which is likely to be suboptimal.
Therefore, this motivates a more sophisticated approach to the
antenna subset selection problem that accounts for correlated
arms in an effort to more quickly identify the optimal subset.

3.2. Proposed Approach

In the proposed approach, instead of tracking the rewards for
each arm, we record an approximation for the proportional re-
ward gained by each constituent antenna within an arm. De-
fine the counters θ̂i, di that track the sample mean of the re-
wards obtained from each antenna, and the number of times
a particular antenna is played, respectively. These metrics are
then updated after each play at time n as follows:

θ̂i (n) =

{
θ̂i(n−1)+Xs(n)/|s|

di(n−1)+1 if i ∈ s
θ̂i (n− 1) else

(10)

di (n) =

{
di (n− 1) + 1 if i ∈ s
di (n− 1) else (11)

The estimated sample mean of the reward due to each indi-
vidual antenna is computed by normalizing the cumulative
reward observed for the arm by the number of antennas com-
prising the arm. The idea is that antennas that do not con-
tribute towards higher rewards are de-weighted over time and
played with decreasing frequency.

The proposed antenna subset selection policy is described
in Algorithm 3.2.1, where at each decision epoch, an exhaus-
tive search is carried out to determine the optimal constituent
antennas. Since the number of antennas is generally less than
8 in practical systems, the exhaustive search does not entail
high computational complexity.
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Algorithm 3.2.1 Antenna Subset Selection Policy

Require: θ̂i = 0,di = 0, i = 1, . . . , N .
// INITIALIZATION
Play each arm once.
Update θ̂i,di.
// MAIN LOOP
while 1 do
n = n+ 1;
Play arm that solves

arg max
s∈S

∑
i∈s

θ̂i +

√√√√ (N + 1) lnn∑
i∈s

di

Update θ̂i,di.
end while

Following the arguments in [10]- [13], the regret accrued
from the proposed policy can be upper-bounded as

Rπ (n) ≤
∑

k:θj≤θ∗

4N2lnn

∆j
+N2

(
1 +

π2

3

) ∑
k:θj≤θ∗

∆j

 .

(12)

4. SIMULATION RESULTS

From the discussion in Sec. 2, numerical simulations require
the distribution of the normalized throughput Ts in (5) for
some choice of channel fading environment. For example,
under the commonly-used Rayleigh fading assumption, the
MIMO channel matrix Hs in (2) is composed of zero-mean
unit variance complex Gaussian variables, and the corre-
sponding transmission rate and throughput are functions of
the random matrix Hs. However, there does not appear to
be a known distribution in the literature for the circuit power
consumption Ps, which stymies efforts to characterize the
statistics of Ts.

Therefore, to verify the advantage of the proposed MAB
scheme, we consider a toy example with N = 4 antennas and
the possible subsets are mapped to 15 arms. The rewards of
each arm follow a Bernoulli process that is i.i.d. over time,
with respective means

θ = {0.48, 0.44, 0.64, 0.70, 0.75, 0.27, 0.67, 0.65, . . .

0.16, 0.11, 0.49, 0.95, 0.34, 0.58, 0.22}, (13)

where we recall that the reward distribution and means are un-
known a priori to the transceiver. Here, θ1 corresponds to the
arm comprising the single antenna {1}, and so forth up to θ15
which corresponds to antenna subset {1, 2, 3, 4}. Therefore,
in this scenario the 12th antenna subset s = {1, 3, 4} with
mean reward θ12 = 0.95 is set as the optimal choice in terms
of reward.

Fig. 2. Regret versus time for N=4.

In Fig. 2, we compare the upper bound and actual re-
gret obtained from the naı̈ve and proposed MAB solutions
for 10000 plays averaged over 100 runs. The theoretical up-
per bound is observed to be somewhat loose. Nevertheless,
the proposed MAB method is seen to clearly outperform the
naı̈ve approach designed for independent arms in terms of re-
gret. An equivalent interpretation of this figure is that under
the proposed method, the optimal antenna subset is located
earlier and played more frequently.

5. CONCLUSION

The use of multiple antennas in mobile devices enables en-
hanced data rates at the cost of increased power consumption.
The stochastic nature of the wireless propagation medium
and random variations in the utilization and operating en-
vironment of the device makes it difficult to estimate and
predict wireless channels and power consumption levels.
Therefore, we investigate a robust antenna subset selection
policy where the power-normalized throughput is assumed to
be drawn from an unknown distribution with unknown mean.
At each time instant, the transceiver decides upon the active
antenna subset based on past observations of the reward ob-
tained from previous choices, with the objective being the
maximization of the average power-normalized throughput.
In this work, we present a non-parametric sequential learning
scheme to achieve this based on the theory of multi-armed
bandits. Simulations verify that the proposed novel method
that accounts for dependent arms outperforms a naı̈ve ap-
proach designed for independent arms in terms of regret.
For future work, a more precise statistical characterization
of the power-normalized throughput and comparison with a
parametric learning scheme would be of interest.
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