
PERFORMANCE OF THE DISTRIBUTED KLT AND ITS APPROXIMATE 

IMPLEMENTATION 
 

Mauricio Lara
1
 and Bernard Mulgrew

2
 

 
1
 Sección de Comunicaciones, Cinvestav-IPN, Av. IPN 2508, CP. 07360, Mexico City, Mexico.  

2
 Institute for Digital Communications, University of Edinburgh, Edinburgh EH9 3JL, UK. 

mlara@cinvestav.mx, B.Mulgrew@ed.ac.uk 
 

 

ABSTRACT 

 

The Karhunen-Loève Transform (KLT) is an important 

processing tool in data compression. Recently, a distributed 

version of the KLT was introduced together with an iterative 

algorithm for its implementation. Then, a recursive greedy 

algorithm for its approximate implementation was 

presented. Performance evaluations of both algorithms in 

the literature have been based on a few toy examples, which 

is not enough to show the intricacies of the distributed KLT. 

In this paper, a multi-terminal Markov-chain model is 

presented and used to evaluate the KLT algorithms using a 

large number of randomly generated covariance matrices. 

One of the findings is that the recursive greedy algorithm 

does not perform as well as predicted, and thus a variation 

of this algorithm is proposed which outperforms the original 

one. Finally, a promising application for both approximate 

algorithms is considered when the optimal distribution of 

the transmitted vectors among terminals is to be obtained. 

 

Index Terms— Distributed compression, distributed 

transforms, distributed KLT, multi-terminal model. 

 

1. INTRODUCTION 

 

The Distributed Karhunen-Loève Transform (KLT) was 

introduced in [1], and it is called to play a major role in 

distributed compression and estimation [2,3]. Regrettably, 

the problem posed in [1] does not seem to accept a closed 

solution, and an iterative algorithm had to be proposed for 

its implementation. Afterwards, a greedy algorithm was put 

forward in [4] to approximately compute the distributed 

KLT with a reduction in complexity, and was found to 

achieve performance very close to that of the iterative 

algorithm. However, performance evaluations in [1] and [4] 

were carried out based solely on a few toy examples, and 

evaluations in more general scenarios are needed. 

In this paper, a multi-terminal Markov-chain model is 

presented,  and it is  used  to  evaluate  the  distributed  KLT 
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algorithms with a large number of randomly generated 

covariance matrices. A variation of the greedy algorithm is 

proposed and shown to outperform the original algorithm at 

the expense of an increase in computation complexity. Also, 

an application for both the greedy algorithm and its 

modified version is investigated in the situation where the 

optimal distribution of the transmitted vectors among 

terminals is not known and has to be obtained. 

 

2. THE KARHUNEN-LOÈVE TRANSFORM 
 

Let   be an     vector of zero-mean, real-valued 

correlated random variables 

  [        ]
  (1) 

with covariance matrix 

    {  
 } (2) 

Through a linear transformation based on an     fat 

matrix  , an     approximation   of   is transmitted to a 

reconstruction terminal, where an     tall matrix   is 

used to get a linear estimate  ̂ of the original vector  . 

                 ̂         (3) 

In a classical problem of linear estimation, the objective 

is to find matrices   and   so as to minimize the mean 

square error (MSE)   between vector   and its estimate  ̂ 

   {‖   ̂‖ } (4) 

Moreover, the problem can be reduced to that of finding 

 , since given matrix  , the reconstruction matrix   that 

minimizes the MSE can be found to be 

     
 (    

 )   (5) 

 

2.1. The joint KLT 
 

The answer to the above classical estimation problem is well 

known [5]. Let    be the     unitary matrix whose 

columns are the eigenvectors of   , ordered by decreasing 

eigenvalues. Matrix   
  is referred to as the Karhunen-

Loève Transform (KLT) of  . If      represents the     

matrix formed by the first   columns of   , then the 

solution to the above optimization problem is given by 

      
  (6) 

We will refer to (6) as the joint KLT of vector  . 
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Fig. 1. The distributed KLT in a multi-terminal environment. 

 

3. THE DISTRIBUTED KLT 

 

Consider the distributed scenario shown in Fig. 1 involving 

  terminals. Terminal 1 observes vector   , made up of the 

first    components of vector  ; terminal 2 observes vector 

  , made up of the following    components of vector  ; 

and so on up to terminal  . Terminal   has to transmit a 

     approximation    of vector    making use of a 

      encoding matrix   , for        . The values 

           add to  , and the values            add 

to  , the dimension of the whole transmitted signal. Vectors 

  and  , and matrix   can be rewritten as 

  [  
    

    
 ]               [  

    
    

 ]  (7) 

  (

   
   

  
  

  
  

  
   

) 

 

(8) 

In the receiving terminal, the   approximations    from 

the terminals are jointly used as the input to an     

reconstruction matrix   to obtain a linear estimate  ̂ of the 

complete vector  . Again, the objective is to find the matrix 

  that minimizes the MSE   defined in (4). This time, 

however, matrix   is restricted to be block-diagonal as in 

(8), and no closed solution seems to exist to date in the 

literature. We will describe an iterative approach to compute 

the distributed KLT introduced in [1] as well as a recursive 

approximation presented in [4]. 

 

3.1. The marginal KLT 

 

One simple, albeit suboptimal, solution is for each terminal 

to transmit a   -dimensional approximation    based on the 

standard KLT applied to its   -dimensional observation 

vector   . This way, each terminal only needs to know the 

covariance matrix of its own observation vector   , and its 

encoding matrix is computed as 

         
  (9) 

where       
  comes from the first    rows of the KLT of 

vector   . Matrix   is then formed according to (8). We call 

this solution the marginal KLT of vector  . 

3.2. The iterative local KLT 

 

Let us first assume that we have only two terminals   and  . 

Terminal   observes vector   , made up of the first   

components of  , and transmits a     approximation   . 

Terminal   observes vector   , made up of the last     

components of vector  , and transmits an (   )    

approximation   . Suppose that terminal   has decided on 

an appropriate (   )  (   ) encoding matrix   . The 

objective is to find the     encoding matrix    of 

terminal   that minimizes the MSE in (4). The solution to 

this problem is given in closed form in [1], equations (12) to 

(18), and it is called the local KLT solution. 

Also in [1], an iterative terminal-by-terminal approach 

is proposed for computing the distributed KLT based on the 

local KLT. First, the encoding matrices            are 

initialized arbitrarily. Then, in one iteration of the algorithm, 

for each terminal        , one at a time, the algorithm 

proceeds as follows. The input vector    and the encoding 

matrix    take the role of    and    of the local KLT, so 

that      . The input vector to terminal   is formed by 

removing vector    from the complete input vector   

   [  
      

      
    

 ]
 
 (10) 

while the encoding matrix    is formed by removing from 

matrix   in (8) the columns and rows of matrix   . Next,    

is computed according to the local KLT explained above, 

and the encoding matrix    is updated as      . The 

algorithm continues for a fixed number iterations or until 

certain criterion is met, for example, when the difference in 

the resulting MSE is less than a tolerance value  . This will 

be called the iterative local KLT algorithm. 

 

4. GREEDY-ALGORITHM KLT 

 

4.1. The greedy-algorithm KLT 

 

In [4] a greedy algorithm is presented as an approximation 

to the distributed KLT. Its main characteristic is that it finds 

all the required matrices            in   steps, one row 

of a particular    at a time. Starting with all encoding 

matrices empty, at each step, the algorithm determines the 

single terminal that, by adding another dimension to its 

compressed version, attains the largest reduction in the 

MSE. Only the encoding matrix of that terminal is updated 

in this step. Any row of a matrix    that has been obtained 

earlier is kept unchanged in the following steps of the 

algorithm. This means that, at some point, an optimization 

problem somewhat different from those tackled in [1] 

appears. Thus, additional equations are developed in [4] to 

deal with this optimization problem, and a recursive 

implementation of the algorithm is presented. Evaluation of 

this greedy-algorithm KLT in [4] with toy examples and 

particular conditions shows excellent approximation to the 

local iterative KLT. 
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4.2. The modified greedy KLT 

 

During our simulations, we realized that the distributed KLT 

was very sensitive to any adjustments to the encoding 

matrices, and leaving unchanged the previously found rows 

of a matrix when other encoding matrices have already 

changed, as the greedy-algorithm KLT does, might impair 

the performance of the final result. Thus, we propose a 

variation of the greedy algorithm in [4] with the same 

philosophy. This is, the modified algorithm finds all 

required matrices            in   steps, augmenting one 

row of a particular    at a time. The difference is that the 

rows of matrix    that have been obtained earlier are 

recomputed when testing new hypotheses; and this 

recomputed matrix is used for the winning candidate. 

Thus, at the end of step  , matrix   has dimensions 

   . Referring to Section 3.2, suppose that terminal   is 

under consideration, and that the   
( )

    matrix   
( )

 and 

the (    
( )
)  (    ) matrix   

( )
 have been defined. 

At step (   ) the objective will be to optimally find a 

new (  
( )   )     augmented matrix   

(   )
, provided 

that   
( )

   . In doing so, while the greedy algorithm 

keeps fixed both matrix   
( )

 and sub-matrix   
( )

 of 

  
(   )

, the modified algorithm keeps fixed only matrix 

  
( )

; this means that matrix   
(   )

 is wholly recomputed. 

This process is completed for each test terminal        , 

and only the encoding matrix   
(   )

 of the terminal that 

delivers the largest reduction in the MSE is updated. 

Both greedy algorithms find matrices            in 

  steps. For each test terminal in the modified algorithm, 

matrix   
(   )

 can be computed based on equations (12) to 

(18) in [1], as for the iterative algorithm. Thus the 

computational load per iteration step increases cubically 

with   [4]. Since for the original greedy algorithm only the 

largest eigenvector is needed to test each hypothesis, the 

computational load can be made to increase just 

quadratically with   [4], which represents a significant 

reduction in the computational burden. On the other hand, 

we will show that the modified greedy KLT algorithm 

outperforms the greedy-algorithm KLT in the MSE. 

 

4.3. Optimal allocation of transmitted signals 

 

Let us consider the problem of how to best allocate the   

transmitted signals among terminals in the context of the 

distributed KLT. The brute force approach would be to test 

the iterative local KLT for each possible combination, and 

select the one that provides the minimum MSE. However, 

when the number   of terminals and size    of the input 

vectors are not small, this number of combinations can be 

very large indeed. We study the possibility of exploiting the 

greedy or the modified greedy KLT algorithms to do this 

job: after all, they are naturally fit for this application. 

 
Fig. 2. Multi-terminal model based on Markov chains. 

 

Accordingly, given  , the dimension of the transmitted 

signal, we let the greedy or modified greedy algorithms to 

increase the number   
( )

 of rows of the encoded vectors    
without the restriction of being limited by a certain value 

other than   
( )

             and ∑  
( )

  . 

 

5. SIMULATION OF THE DISTRIBUTED KLT 

 

5.1. The multi-terminal Markov-chain model 

 

A random     covariance matrix can be generated as 

       
      (11) 

where   is an     matrix with elements drawn from a 

zero-mean uncorrelated Gaussian distribution with variance 

   ,   is an     matrix with unit energy rows that 

defines the cross-correlation coefficients of the source, and 

  is an     diagonal matrix that defines the power of the 

individual components of the vector source. It is desirable to 

have a covariance model that can be parameterized with just 

a few variables. For matrix   we propose a multi-terminal 

Markov-chain model as shown in Fig. 2(a). The parameters 

are            that represents the correlation coefficient 

of the source in terminal  , and              that 

represents the correlation coefficient between a given 

element    of the source vector in terminal   and a given 

element      of the vector in terminal    . For matrix   we 

propose a diagonal matrix with diagonal elements 

          {
     (   )      

     
            

(12) 

where, in order to preserve the unit average variance of the 

whole source,   is set as 

   
   

    
     

(13) 

Note that the covariance matrices used in [1] and [4] are 

deterministic, while those used here are random. Thus, 

every element of    in (11) is a random variable whose 

mean value is given by the corresponding element of 

 ̅   {  }     
    (14) 

 

5.2. Simulation set-up 

 

The number of terminals considered is    , the total 

number of input  signals is     ,  and the total  number 

of transmitted  signals is,  unless  otherwise  stated,      . 
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Scenario                 

1 0 0 0 1 20 20 

2 0.8 0.8 0 1 20 20 

3 0.8 0.8 0.8 1 20 20 

4 0 0.8 0.5 1 20 20 

5 0 0 0 0.96594 20 20 

6 0 0 0 1 25 15 

Table 1. Definition of scenarios of the multi-terminal model. 

 
Fig. 3. MSE performance of different distributed KLT algorithms 

versus the size of encoded vector for scenario 1. 

 

Using the above model, six different multi-terminal 

scenarios are defined in table 1. In all of them, the last 

component of terminal 1 is connected through the Markov 

chain to the first component of terminal 2, as shown in Fig. 

2(b). The first three scenarios are symmetric, i.e.      , 

      and    , and the last three scenarios are 

asymmetric. In scenario 5, the source in terminal 1 has more 

power that the source in terminal 2. For     , the value 

of           results in the first 20 elements of   having 

double the average power of the last 20 elements. In 

scenario 6, the source in terminal 1 has also more power 

than that one in terminal 2, this time because it has more 

components of the input vector. The performance criterion 

is the MSE, and it is based on 500 realizations of the 

random matrix   in (11). Throughout the simulations, the 

iterative KLT algorithm is run with three different random 

initializations, and the run with minimum MSE is selected. 

 

5.3. Simulation results 

 

Simulations were carried out to compare the performance of 

the different distributed KLT algorithms. Figs. 3 to 6 show 

the results for scenarios 1, 3, 4 and 6. The results for 

scenarios 2 and 5 are not shown, but the performance in 

scenario 2 is very similar to that one in scenario 3. The 

performance in scenario 5 is somewhat similar to that one in 

scenario 6, but the MSEs are around 0.5 units lower and the 

MSEs of both greedy algorithms are always between those 

of the joint and marginal KLTs. As expected, the MSEs are 

lower when the source components are more correlated or 

have unequal distribution of power.  We observe that for the 

 
Fig. 4. MSE performance of different distributed KLT algorithms 
versus the size of encoded vector for scenario 3. 

 
Fig. 5. MSE performance of different distributed KLT algorithms 

versus the size of encoded vector for scenario 4. 

 
Fig. 6. MSE performance of different distributed KLT algorithms 
versus the size of encoded vector for scenario 6. 

 

symmetrical settings (scenarios 1, 2 and 3), lower MSEs are 

obtained when      , while for the asymmetrical settings 

(scenarios 4, 5 and 6), lower MSEs are obtained for some 

value of       (   around 13 in these conditions). This 

means that better performance is achieved when more 

transmitted components are allocated to the sources that 

have more power and are less correlated. We also notice that 

the modified greedy KLT outperforms the original greedy-

algorithm KLT in all the scenarios. The performance of both 

algorithms though can be in some situations close to or even 
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Fig. 7. Normalized MSE performance of different distributed KLT 
algorithms versus the number of transmitted signals for scenario 1. 

 

worse than the performance of the marginal KLT. In 

particular, the greedy-algorithm suffers considerably in the 

highly correlated scenarios 2, 3 and 4. Notice that the 

expected value of the covariance matrix in (14) for scenario 

3 is symmetric Toeplitz with first row (          ). 
References [1] and [4] also use such a matrix in some 

examples, however in their case the components of vector 

   are interspersed with those of vector   . 
Then the influence of   on the performance of the 

algorithms was assessed. It is well known that the MSE of 

the joint KLT decreases as the number of transmitted 

components increases; the same behaviour can be shown to 

be true for the other KLT algorithms here studied. To better 

perceive the differences among the algorithms, we consider 

the performance of the distributed algorithms relative to the 

performance of the joint KLT. Fig. 7 compares the various 

distributed KLT algorithms in scenario 1; the number of 

transmitted signals in each terminal is the same, and the 

performance criterion is the MSE normalized to the MSE of 

the joint KLT. We realize that for large  , the performance 

of the greedy-algorithm can become worse than that one of 

the marginal KLT, while the performance of the modified 

algorithm is kept close to that one of the iterative KLT. The 

fact that the normalized MSE increases with   for all the 

algorithms in Fig. 7 might seem counterintuitive, but it only 

shows that as   grows the MSE of the joint KLT decreases 

faster than the MSE of the distributed algorithms. 

Finally, both greedy algorithms were evaluated as 

estimators of the optimum size    of the encoded vectors, as 

explained in Section 4.3. Once these values were found, 

they were used with the iterative local KLT algorithm to 

obtain the final distributed KLT. At the same time, the 

iterative local KLT algorithm was run to find the optimum 

value of    through an exhaustive search. Fig. 8 shows the 

histograms, averaged over the six scenarios of simulation, of 

the difference between the optimum value of    and that one 

estimated by the greedy algorithms. We can see that nearly 

half of the time both algorithms make a correct estimation of 

the optimum value of    , and nearly the other half they get 

it wrong by only one unit.  From  Figs. 3 to 6, we notice that 

 
Fig. 8. Evaluation of distributed KLT algorithms as estimators of 

the optimum size    of the encoded vectors. 

 

around the optimum value of    the MSE curves of the 

iterative local KLT are fairly flat, so a shift of one unit in the 

value of    might not be as detrimental. In fact, for the MSE 

normalized to the optimum MSE of the full-search iterative 

local KLT, we found that for the greedy-algorithm,     
       with      and            with     , and 

for the modified algorithm,            with      

and            with     . 

 

6. CONCLUSIONS 

 

In this paper, we evaluated the performance of several 

distributed KLT algorithms based on random covariance 

matrices generated according to a proposed multi-terminal 

Markov-chain model. We introduced a modification to the 

greedy-algorithm KLT that showed to outperform the 

original algorithm with an increase in complexity. We found 

though that we could not always rely on any of these 

algorithms since, in some conditions, their performance can 

be close to or even worse than that one of the marginal 

KLT. Nonetheless, simulations showed that the performance 

of the distributed KLT is highly influenced by the allocation 

of transmitted signals among the terminals, and both greedy 

algorithms showed in general an adequate performance for a 

promising application where the best allocation of the 

transmitted signals between the terminals is to be obtained. 
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