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ABSTRACT

Statistical speech synthesis (SSS) approach has become one of the

most popular and successful methods in the speech synthesis field.

Smooth speech transitions, without the spurious errors that are ob-

served in unit selection systems, can be generated with the SSS ap-

proach. However, a well-known issue with SSS is the lack of voice

similarity to the target speaker. The issue arises both in speaker-

dependent models and models that are adapted from average voices.

Moreover, in speaker adaptation, similarity to the target speaker

does not increase significantly after around one minute of adaptation

data which potentially indicates inherent bottleneck(s) in the sys-

tem. Here, we propose using the hybrid speech synthesis approach

to understand the key factors behind the speaker similarity prob-

lem. To that end, we try to answer the following question: which

segments and parameters of speech, if generated/synthesized better,

would have a substantial improvement on speaker similarity? In this

work, our hybrid methods are described and listening test results are

presented and discussed.

Index Terms: speech synthesis, statistical speech synthesis, speaker

similarity, speaker adaptation, hybrid synthesis

1. INTRODUCTION

The statistical speech synthesis (SSS) approach has become one of

the most popular and successful methods in the speech synthesis

field. Despite its lower average quality compared to the unit selec-

tion approach, it has some advantages which make the SSS approach

attractive both for speech researchers and speech industry. One of

the advantages is the lack of spurious errors that are observed in

the unit selection scheme. In fact, in Blizzard Challenges 2005 and

2006, mean opinion scores (MOS) of an HTS system was higher

than the unit selection system because of the relatively lower num-

ber of sudden annoying artifacts in speech generated with SSS [1].

In addition to generating smooth synthetic speech, SSS systems

have other important advantages. One of the most important advan-

tages is the ability to adapt to a new speaker’s voice with a couple of

minutes of data. Thousands of voices have been generated with SSS

using speech databases prepared for speaker-independent speech

recognition systems [2]. However, a problem with the SSS method

is the low similarity of synthetic voice to the original speaker. Both

speaker-dependent and speaker-adaptation methods produce voices

that have low similarity to the target speaker. Moreover, the problem

is not significantly alleviated by using more adaptation data from the

target speaker [3] which indicate potential inherent bottleneck(s) in

the system.

There are many methods that were shown to improve the natu-

ralness of SSS (for example, the global variance (GV) method [4] or

the minimum generation error training [5]); however, same progress

could not be achieved for the similarity issue. Although the problem

is well-known, there has not been any method that could substan-

tially reduce the issue. In one of the recent works, similarity scores

have been improved by using higher sampling rates and increasing

the pitch variations for a speaker-dependent voice [6]. However,

more work is needed both for understanding and solving the issue.

The goal of this paper is to gain more insight to the similarity

problem. Two potential sources: inaccurate acoustic modeling and

parameter generation algorithms are investigated to understand what

are the key factors that distort speaker similarity. We took a novel

analysis approach and investigated the problem using hybrid speech

synthesis. The core idea of the hybrid methods is to use both unit

selection and SSS methods to take advantage of their strengths and

get better quality speech than them [7]. Here, we used the hybrid ap-

proach to use original recordings in selected segments of speech and

generate the rest of the speech with SSS to understand which speech

segments and features have the most effect in similarity degradation.

For example, in one approach, we focused on transitional segments

of speech which are not modeled well with SSS, and used original

recordings for those while synthesizing the rest of the speech using

SSS. Using five such hybrid techniques, we investigated key param-

eters that need to be improved in SSS to increase speaker similarity.

This paper is organized as follows. Parameter extraction and

modeling is described in Section 2.1. Maximum-likelihood param-

eter generation algorithm and the hybrid algorithm are described in

Section 2.2 and Section 2.3 respectively. The hybrid methods that

are proposed to investigate the effects of different factors in degraded

similarity are explained in Section 3. Experiment setup and results

are presented and discussed in Section 4.

2. OVERVIEW OF THE STATISTICAL SPEECH

SYNTHESIS APPROACH

The parameter extraction, acoustic model training, parameter gener-

ation and vocoder used in our SSS are described below.

2.1. Parameter Extraction and Modeling

As a first step in training, speech parameters are extracted from

the speech database. There are various alternatives for modeling

the speech spectrum, such as mel-cepstrum and generalized mel-

cepstrum parameters (MGC). Excitation can be modeled with an

impulse train for voiced speech and random noise for the unvoiced

speech. For the voiced speech, logarithm of the fundamental fre-

quency (LF0) is extracted. One important problem with LF0 is that,

although it has continuous values for voiced speech, it is not defined

for the unvoiced speech. Therefore, a symbol indicating unvoiced

speech is used instead of LF0 for unvoiced speech. That makes the
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LF0 a sequence of continous-valued numbers and symbols which is

modeled with multi-space distribution (MSD).

The spectrum and pitch features are fused together to create the

static feature vector fT
t = [cTt , (lf0)

T
t ] at time t. Besides the static

features, velocity (∆fT
t ) and acceleration (∆∆fT

t ) features are also

used to create the final feature vector oTt = [fT
t ,∆fT

t ,∆∆fT
t ].

Statistical speech synthesizers can create smooth feature trajectory

because of modeling the acceleration and velocity of the features in

addition to the static features.

Changes in the pitch contour do not necessarily occur in syn-

chrony with the spectral features. State-level alignments of those

two sets of features can be very different. Modeling them jointly

results in suboptimal state alignment both for the spectral and pitch

features which causes misestimations in modeling those features.To

solve that problem, those two stream of features can be trained in-

dependently in a multi-stream training framework which provides

some flexibility to the system.

Phonemes are modeled with N -state Hidden Semi-Markov

Models (HSMM) in the STS approach. As opposed to the HMM ap-

proach used in most current speech recognition systems, state dura-

tions, Πi(d) are modeled by a Gaussian distribution, N(µd,i,Σd,i),
in the HSMM approach. This allows the flexibity to set and change

the phoneme durations explicitly. Spectral features are typically

modeled with a multivariate Gaussian distribution N(µc,i,Σc,i) and

pitch features are modeled with multivariate Gaussian distribution

N(µp,i,Σp,i) for voiced states. Acoustic model parameters λ are

trained with a maximum likelihood approach

λ̂ = argmax
λ

p(O|λ). (1)

Because there is no closed-form solution, expectation-maximization

algorithm is used for estimating λ.

In text-to-speech systems, it is critical to take into account the

context of phonemes to synthesize them as close to natural as pos-

sible. In the HTS approach, phonemes have labels that contain in-

formation about the phone-level, syllable-level, word-level, phrase-

level and utterance-level context in addition to syntactic features

such as part-of-speech tags and intonation tags such as TOBI end-

tones for phrases. Although those labels help accurately model the

phoneme parameters, it is impractical to collect enough training for

each possible combination of different contexts. Therefore, decision

trees are used to cluster phoneme states that have different labels but

that are automatically found to be similar.

2.2. Parameter Generation and Synthesis

Once the acoustic models are trained, they can be used to synthesize

speech for a given text. The first phase of synthesis is to generate

a sequence of phonemes from the text with an associated label for

each phoneme. Each phoneme is then modelled with an HSMM

and the HSMM models are concatenated to represent the final ut-

terance. Because pitch and MGC parameters are modelled indepen-

dently, separate sequences of HSMMs are used for them. State-id’s

of the HSMMs are found using the decision trees and phoneme la-

bels described above. Duration distributions for each state is also

found using the decision trees trained for the duration parameter.

Once the state-id’s, therefore the emission pdf’s, for each state

is known, the parameter sequence O for MGC or pitch can be gen-

erated using

Ô = argmax
O

p(O|λ) =
∑

allQ

p(O|Q,λ)p(Q|λ). (2)

where Q represents a possible state sequence for each observa-

tion Ot. Eq. 5 can be simplified by choosing the most likely state

sequence by

Ô ≈ argmax
Q

p(O|Q,λ)p(Q|λ). (3)

Eq. 3 can be further simplified by maximizing the state-sequence

(state durations) independently. In this case,

Q̂ = argmax
Q

p(Q|λ) (4)

and

Ô = argmax
O

p(O|Q̂, λ). (5)

Parameter O contains static, delta, and delta-delta features.

However, we are only interested in the static parameters. Therefore,

for the spectral features, Eq. 5 can be written as

ĉ = argmax
c

p(Wc|Q̂, λ). (6)

where W is used to derive the delta and delta-delta features from

the static features. Let M = [mT
q1
,mT

q2
, ...., mT

qN
] and the block

diagonal matrix U−1 = diag[U−1

q1
, U−1

q2
, ...., U−1

qN
] where mT

qi
is

the mean vector and U−1

qi
is the inverse covariance matrix of state i.

Then, solution to Eq 6 is

ĉ = (W T
U

−1
W )−1

W
T
U

−1
M (7)

Once the parameters are estimated for MGC and pitch for the

whole text, a parametric LPC-based speech vocoder can be used to

synthesize the speech. Simple impulse/noise switch typically pro-

duces buzzy quality speech. To solve that issue, many systems

employ a mixed-excitation approach where impulse and noise are

mixed together in different bands. In that case, mixing weights

are also estimated and trained in the acoustic model training phase.

Similarly, they are generated at the synthesis phase and used by the

vocoder.

2.3. Hybrid Approach to Parameter Generation

In the hybrid approach used here, synthesizing speech with natural

speech segments injected throughout the utterance is formulated as

constrained optimization problem [7]. The objective function in Eq.

6 is maximized with the constraint that Aĉ = cnat where cnat is

obtained from a concatenation of static vectors from the natural seg-

ments, and A is used to select the natural segments in the speech

utterance. Using a Lagrange multiplier approach,

ĉ = (W T
U

−1
W )−1

W
T
U

−1
M + (W T

U
−1

W )−1
A

T
γ (8)

where γ is the Lagrange multiplier and can be found by using ĉ in

the constraint Aĉ = cnat. This method ensures that the trajectory

generated follows the natural trajectory when it is available.

3. ANALYSIS OF SPEAKER SIMILARITY USING THE

HYBRID APPROACH

Although synthesized speech with SSS is intelligible and smooth,

its similarity to the original speaker is low. There are three possible

factors that can cause the problem. The first factor is the lossy para-

metric vocoding technique used in SSS. When speech is synthesized

with the correct parameters derived from original recordings, simi-

larity to the original speaker is exceedingly high compared to speech
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synthesized with synthetically generated parameters. Therefore, this

factor was not tested in our listening tests.

The second potential factor in distortion is the inaccurate acous-

tic modeling technique used in SSS. It is well-known that HMMs

cannot model rapid speech transitions well. Moreover, assuming

stationarity on each state is merely an approximation that can cause

monotonic speech for long states. Furthermore, in most SSS sys-

tems, speech is represented with a single Gaussian which is known

to be a crude representation as large vocabulary speech recognition

systems typically use at least 32-64 Gaussians per state. Therefore,

we investigated the inaccurate speech representation as a potential

source of problem in speaker similarity.

The third factor is the parameter generation algorithm. It is well-

known that the parameter generation algorithm described in Section

2 generates overly-smooth trajectories. Maximizing the objective

function in 6 is equivalent to the least-norm solution because of the

Gaussianity assumption which favors smooth parameter trajectories.

To solve the issue, global variance (GV) approach has been proposed

which adds an additional term to the objective function to reduce

the cost of having higher delta and delta-delta parameters. Although

global variance increases the overall quality, improvement in speaker

similarity with it has not been investigated in detail in the literature.

Here, we focused on the effects of inaccuracies in acoustic mod-

eling and parameter generation algorithms as two potential sources

that reduce the speaker similarity. The five different synthesis exper-

iments that are conducted to test those effects are described below.

In all hybrid methods, the original recording with the HMM

states first time-aligned using forced alignment. Then, during pa-

rameter generation, the system is enforced to use those time align-

ments. This allowed us to one-to-one match the frames between

original and synthesized speech. Moreover, the biasing effect of in-

accurate state durations are eliminated from the test and we could

focus only on the MGC and LF0 related changes.

3.1. Hybrid Mid-Frame (HMF) Approach

In this approach, we fix the feature vectors that are in the middle of

each state to the corresponding vector in the original recording. The

goal in this approach is to answer this question: Can the parame-

ter generation algorithm do a good interpolation if the mean vectors

are correct on the middle state of each frame. In general, good in-

terpolation performance is obtained but there are problems with the

long states. As soon as the state duration increases beyond a certain

point, the hybrid MGC and LF0 trajectories approach the SSS gen-

erated trajectories as shown in Fig. 1. The effect is less noticeable

in the LF0 trajectories.

3.2. Hybrid Long State (HLS) Approach

The HMF approach is not good at accurately modeling the param-

eter trajectories on the longer states. Smooth trajectories generated

with SSS become virtually flat for those long states which occupy a

significant portion of speech. For example, stable segments of long

vowels typically have long mid-states as shown in Fig 3. Such flat

trajectories are expected to increase robotic quality and potentially

reduce the speaker similarity. From a different perspective though,

those states in general are not expected to model rapid speech tran-

sitions. Hence, unnaturally smooth trajectories may not affect the

similarity as long as formant locations and bandwidths are modeled

correctly on average. Moreover, some of those longer states corre-

spond to fricatives which do not play a significant role in speaker

similarity.

200 250 300 350 400 450 500 550
4

5

6

7

8
Trajectories for the First MGC Parameter

ORG

SS

HYB

state midpoints

200 250 300 350 400 450 500 550
100

150

200

250

Frame Number

H
z

Trajectories for the Pitch Parameter

ORG

SS

HYB

state midpoints

Fig. 1. Comparison of LF0 and the first MGC trajectory for sta-

tistical synthesis (SSS), original recording, and the HMF approach.

Features of the middle frame of each state is fixed to its correspond-

ing frame in the original recording.
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Fig. 2. Comparison of LF0 and the first MGC trajectory for statisti-

cal synthesis (SSS), original recording, and the HLS approach. Long

states are replaced with original recordings and the rest of the speech

is generated with SSS.
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In the HLS approach, the question of how much of the speaker

similarity is lost because of unnatural feature trajectories on the long

states is investigated by replacing the features on those states with

the natural segments using the hybrid approach. In the example

shown in Fig 2, the deviation from the SSS trajectory is less with

HLS compared to HMF. That is expected since the trajectory is not

sampled as frequently as HMF.

3.3. Hybrid Natural Vowel (HNV) Approach

In the HLS approach, relatively stable portions of long speech seg-

ments are replaced with original recordings. However, that method

does not take into account the beginning and end parts of sounds

where a lot of the rapid formant transitions occur. Because vow-

els are very important in perception and quality, and they typically

contain both long stable states and rapid transitions, as shown Fig 3,

their parameters are replaced with the natural parameters using the

hybrid approach.

The question that is explored with this approach is whether mod-

eling not only the stable mid-vowel segments but also the beginning

and end parts of vowels accurately makes a difference in speaker

similarity or not. Formants and formant bandwidths are directly re-

lated to vocal tract and they have an immense effect on the percep-

tion of speech. Modeling them with correct transitional behavior

throughout all vowels is expected to increase speaker similarity.

3.4. Hybrid Formant Transitions (HFT) Approach

In the HFT approach, the goal is to replace the transitional segments

of speech with the natural speech segments independent of the sound

class. The transitional segments in speech is detected by monitoring

the formant transitions. The first formant transitions are not always

easy to detect and the third formant is not easy track. The second for-

mant, however, typically moves fast in the transitional speech seg-

ments and is usually easier to detect. Therefore, the second formant

trajectories are detected using the Praat tool, and the rapid second

formant changes are detected over a window of N frames. If the

median delta feature over N frames centered around the target frame

is above a threshold, the frame is labeled to be within a transitional

segment. This simple detector was found to perform well in detect-

ing the transitional segments.

3.5. Hybrid Pitch Transitions (HPT) Approach

Rapid pitch transitions are also problematic in the SSS approach.

Typically, speech produced by SSS has monotonous pitch trajec-

tory which mostly cannot model the pitch variations in the target

speaker’s natural speech. In some cases, for example accented

speech, modeling the pitch variations correctly can have a signifi-

cant impact on the speaker similarity. Using natural pitch trajecto-

ries where pitch changes rapidly allowed us to explore how much

reduction in those variations degrade the speaker similarity.

4. EXPERIMENTS

4.1. Experiment Setup

All systems in the experiments were trained with 75 dimensional

vectors consisting of 24 MGCs, 1 log F0 coefficient and their delta

and delta-delta parameters. 20 msec analysis window with 5msec

frame rate is used for feature extraction. Phonemes are modeled

with 5 state HSMMs.

Fig. 4. XAB test results when hybrid LF0 is generated with the five

methods.

Fig. 5. XAB test results when hybrid MGC is generated with the

five methods.

Wall Street Journal (WSJ) database is used to train the aver-

age voice and the speaker-adapted voices. Four male speakers with

1250 utterances for each of them are used for training the average

voice. Four different speaker-dependent models are generated us-

ing CSMAPLR adaptation with an additional MAP step using 1200

adaptation utterances per speaker [8]. HTS 2.2 training and synthe-

sis tools are used to generate the samples for the baseline systems

(http://hts.sp.nitech.ac.jp/).

XAB tests are used to measure the similarity of synthesized

speech to speaker’s voice. Listeners chose if sample A or sample

B is more similar to copy-synthesis sample X. Instead of original

recordings, their copy-synthesis versions are used where parameters

are extracted from the recordings and then speech is resynthesized

with those parameters using the HTS vocoder. The purpose of this

method is to eliminate the speaker similarity loss that is related to

vocoding since the goal in this work is to investigate the effects of

acoustic modeling and parameter generation related similarity loss.

Six speakers took the test. 36 samples are generated for each hybrid

approach with 12 samples for hybrid LF0, 12 for hybrid MGC, and

12 for both LF0 and MGC parameters. Listeners scored a total of

180 samples.

4.2. Results and Discussion

Results of the similarity tests are shown in Figs. 4-6. In Fig 4,

the effect of hybrid LF0 approach is shown on similarity preference.

Although, hybrid systems seem to outperform the baseline system,

variances are very high. Analyzing the results and talking with the
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Fig. 6. XAB test results when hybrid MGC and LF0 is generated

with the five methods.

listeners, the variance in preference seems to be related to speak-

ing style changes. Some speakers speak with a certain distinctive

style which is characterized with pitch variations. When that is the

case, listeners preferred the hybrid system which could more suc-

cessfully mimic those pitch patterns. In some cases, however, re-

duction in pitch variations and stress simply made the speaker sound

more tired, fatigued, and less energetic individual without altering

the characteristic properties of his speech. These cases were per-

ceived as just a change in speaker style by some listeners. This has

been found to be the major factor in high variability in preferences

for the hybrid LF0 case.

Especially for the HPT and HLS cases, listeners put more prefer-

ence on the hybrid LF0 approach. The HPT approach was expected

to perform well since pitch variations are captured accurately with

it. Good performance of HLS was found to be related to reduction

in pitch monotonicity on the long states.

Results of listening tests with MGC is shown in Fig 5. Hybrid

methods also give good performance for MGC especially for the

HMF case which was expected because of high sampling rate of the

original trajectories. HNV and HFT methods also performed well

for this case. Both of those methods involve capturing the rapid

transitions in speech as opposed to HLS, which performed poorly,

that captures the stable regions. This result indicates that capturing

rapid transitions in speech is important for improving the speaker

similarity.

Results of the listening tests with hybrid MGC and LF0 are

shown in Fig 6. Not only the hybrid approach significantly out-

performed the baseline system substantially in all cases, confidence

regions are also tighter compared to MGC-only and LF0-only cases.

Clearly, similarity to the target speaker improves substantially when

both MGC and LF0 parameters are improved at the same time. Per-

formance is best with HMF and worst with HLS. That result was

expected given the high sampling rate of HMF and relative insignif-

icance of stable long states in capturing the speech dynamics.

In our analysis, we have observed that MGC related changes

improves formant bandwidths. Muffled and robotic quality of speech

goes down with reduction in formant bandwidths which not only

improves the quality but also the speaker similarity. That fact is also

used in improving the quality of speech by postfiltering which is

commonly used in SSS systems.

5. CONCLUSIONS AND FUTURE WORK

Hybrid speech synthesis approach was used to analyse the effects

of improving different segments of synthetic speech using original

recordings. The goal was to invesigate which segments/parameters

in speech, if improved, can have substantial impact on similarity.

Hybrid LF0 synthesis was sometimes perceived simply as style re-

lated changes but not a change in the speaker’s voice character. How-

ever, in some other cases, LF0 was found to be a distinctive feature

and hybrid LF0 was prefered. MGC related changes improve the

quality but speakers were specifically asked not to prefer based on

quality. However, some of the quality improvements such as reduc-

tion in formant bandwidths and more natural formant transitions also

heavily affected listeners’ preference on similarity. The biggest gain

in performance was clearly obtained when both MGC and LF0 seg-

ments were generated with a hybrid approach. The improvement

was found to be surprisingly consistent over the five different meth-

ods. In the future work, we will investigate the substantial boost

in similarity when MGC and LF0 are improved together and try to

uncover the acoustic-phonetic and perceptual reasons behind it.
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