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ABSTRACT
In the paper, we present a Bayesian super resolution method
that uses an approximation of symmetric alpha-stable (SαS)
Markov Random Fields as prior. The approximated SαS
prior is employed to perform a maximum a posteriori (MAP)
estimation for the high-resolution (HR) image reconstruction
process. Compared with other state-of-the-art prior models,
the proposed prior can better capture the heavy tails of the
distribution of the HR image. Thus, the edges of the recon-
structed HR image are preserved better in our method. Since
the corresponding energy function is non-convex, the iterated
conditional modes (ICM) method is used to solve the MAP
estimation. Results indicate a significant improvement over
other super resolution algorithms.

1. INTRODUCTION

Digital Image/Video Super-Resolution(SR) techniques are
widely desirable in many fields, such as medical imaging,
military information acquisition and consumer electronics.
Physically increasing the pixel density of the charge-coupled
device (CCD) arrays can be very expensive [1], therefore
people are more in favour of using SR algorithms to increase
the resolution of the observed data.

The first SR method proposed by Tsai and Huang [2] used
a frequency domain approach based on the shifting property
of the continuous Fourier transform. Some assumptions were
made in their experiments, such as, e.g., the purely transla-
tional motion of frames is known, and there is no blur. Later
research was extended to consider the observation noise and
the spatial blurring, and many spatial based SR approaches
have been proposed to overcome the drawbacks of the fre-
quency domain method. Spatially reconstructing high resolu-
tion images from their low resolution versions is an ill posed
problem, which is solved by combining multiple successive
sub-pixel shifted low resolution frames. Due to the pres-
ence of sub-pixel displacement, it is possible to obtain high
frequency content beyond the Nyquist limit of the sampling
equipment.

In last decade, SR methods using the Bayesian frame-
works have become central to the design of novel SR al-
gorithms. Since Bayesian methods include explicit prior

constraints on the solution, an important idea is to utilize
a constraint, as close to the real distribution of the original
scene as possible. Among the Bayesian SR methods, Gaus-
sian Markov Random Fields (GMRF) [3] is one of the mostly
used priors. Actually, in image reconstruction, the choice of
prior is of crucial importance for edge preservation. Farsiu
et al. proposed the bilateral total variation (BTV) prior; this
method is declared to have a good noise suppression ability,
however the results are always blurred. In [4], the authors
have adopted the Generalized Gaussian as prior, due to the
heavy tail property it possesses, and this method can offer
a good enhancement of visual quality of the super-resolved
image.

In this paper, we adopt a Gaussian Scale Mixture approx-
imation for α-stable prior, under the Markov Random Fields
(MRFs) framework. The proposed approach enables the use
of a Bayesian probabilistic image processing framework. The
remaining paper is organized as follow: Section 2 briefly re-
views Bayesian super-resolution together with a description
of some standard priors. Section 3 gives some necessary pre-
liminaries on the α-stable model, as well as details on how to
approximate the α-stable using the GSM model. Both quali-
tative and quantitative results for super-resolved video frames
are presented in Section 5. Finally, we conclude the paper in
Section 6.

2. BAYESIAN SUPER-RESOLUTION

Suppose we are given F low resolution images and each im-
age contains arbitrary motion relative to a reference frame.
Every low-resolution (LR) image is represented as vectors,
denoted as Y1...Yf . The aim of the SR method is to infer
the high-resolution frame X from the observed low-resolution
images. In this Section we study Super-Resolution as an in-
verse problem and address related regularization issues.

Fig. 1 shows diagrammatically the structure of our SR al-
gorithm. The proposed method estimates the parameters for
the SαS prior and then approximates it with a GSM model.
This step improves the quality of the reconstructed image, by
helping preserve edges better. There are many motion esti-
mation methods proposed available, such as Block Matching,
Pyramidal Lucas-Kanade and Combined Local Global (CLG)
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Fig. 1. Block diagram of the SR process

optical flow. Among those methods, we adopted the CLG op-
tical flow as it was shown to outperform the other two meth-
ods [5] [4].

There are two fundamental terms included in a typical
Bayesian SR framework, namely the conditional probability
(likelihood) P (y|X) and the prior P (X). If we use X to rep-
resent the original HR image and X̂ corresponds to the esti-
mated HR image, then Bayes SR can be derived starting from
Bayes theory:

P (X|y, d) =
P (X, d)P (y|X, d)

P (y)
(1)

where d is the motion vector and y are the observed images.
P (y) is called the evidence, and can be neglected as it is a
constant value [4]. Therefore, the high-resolution image can
be obtained by maximising P (X|d, y), which constitutes the
well-known MAP estimator:

X̂ = arg max
X

P (X, d)P (y|X, d)

= arg min
X

(−logP (X, d)− logP (y/X, d)) (2)

Hence, we will have to specify the prior P (X, d) to incorpo-
rate with the likelihood part P (y/X, d).

Most state-of-the-art Bayesian SR approaches are based
on a generative model for the observed low resolution im-
ages, comprising a prior over the high resolution image to-
gether with an observation model. The prior is also known
as a regularization term. Among previously proposed priors,
we consider two of them in the rest of the paper. Farsiu et al.
proposed the BTV prior in [6]:

P (X) =
1

α
exp{β

l∑
n,m=−l

γ|n|+|m|||X − SnxSmy X||1} (3)

where α, β and γ are parameters of the prior, Snx S
m
y are shift-

ing matrices that shift the image horizontally and vertically by
n and m pixels respectively [6] [4]. This model can penalise
the energy function by comparing the estimated HR image
to versions of itself shifted by an integer number of pixels in
various directions. In [4], authors is motivated by recent pro-
gresses on natural image statistics. The gradient magnitudes
generally obey a heavy tailed distribution [7], hence GGMRF
prior was used and described as:

P (X) =
1

α
exp{β

∑
s,rε Ω

||gs,r||q} (4)

The parameter β determines the influence of the prior, while
|| · ||q refers to the Lq norm with q being constrained between
1 and 2. gs,r refers to the first order neighbourhood of pixels,
while s and r indicate the location of these two pixels.

3. THE SYMMETRIC ALPHA-STABLE PRIOR

Recently, work on non-Gaussian modelling for image pro-
cessing gained increasing interest in the research community.
In [8], for image restoration, the authors employed an α-
stable distribution to better capture the heavy-tailed nature of
the data as well as the inter-scale dependencies of wavelet
coefficients. The algorithm successfully removes noise from
digital images, while preserving the visual quality of the im-
age very well. α-stable distribution does not always have a
closed-form expression, which makes it difficult to use in a
Bayesian framework. To overcome this problem, Kuruoglu
et.al have proposed an analytical approximation for α-stable
probability density functions in [9], by using Gaussian Scaled
Mixtures (GSM). Here, we model images with approximated
SαS Markov Random Fields (MRFs).

A general stable distribution is determined by four param-
eters: shape parameter α is in (0, 2] , also known as charac-
teristic exponent. This is the most import parameter of stable
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distribution; the smaller the characteristic exponent α is, the
heavier the tails of the SαS density. The skewness parameter
β is in [−1, 1] and measures the asymmetry of the distribution
(which in our case is set to zero). Scale parameter c and lo-
cation parameter µ indicate the width and the location of the
distribution respectively. The characteristic function is used
to define the general SαS PDF:

ϕ(ω) = exp(jµω − c|ω|α) (5)

The SαS model is suitable for describing variables with
heavier tails then what is assumed by exponential families.
This is because the SαS distribution follows an algebraic rate
of decay, whereas the decaying occurring in the GGD is ex-
ponential.

Nolan [10] describes a consistent maximum likelihood
method to estimate parameters of SαS, which gives reliable
estimates and provides the most tight confidence intervals.
Hence, we first estimate the parameters of the image gradient
distribution by using Nolan’s method [10]. The method in [9]
is based on the corollary of mixing property of α-stable ran-
dom variables. Specifically, [11] states that any SαS random
variables can be written as the product of a Gaussian random
variable and a positive stable random variables. In [12] this
theorem is mathematically given as:

fZ(z) =

∫ ∞
−∞

fZ|V (z|v)fV (v)J(z, v)dv (6)

where fZ(z) is the SαS distribution we want to approximate,
fZ|V (z|v) follows a Gaussian distribution with fV (v) being
its weighting parameter. Herein fV (v) is a positive stable ran-
dom variable, also referred to as the mixing function [9] [11].
The last term J(z, v) represents the Jacobian of Z with respect
to V. The analytic expression proposed in [9] for the SaS ap-
proximation is thus:

Pα,γ,β=0,µ(z) =

∑N
i=1

1√
2πvi

exp(− (z−µ)2

2vi2 )fV (vi)∑N
i=1 fV (vi)

(7)

where the denominator is the normalization constant.

4. SAS-MRF SUPER-RESOLUTION ALGORITHM

In this section with provide details on our proposed SαS
MRF SR method. In accordance with the Bayesian model
described in Sec. 2, the likelihood term can expressed as:

P (Y |X) ∝
F∑
f=1

‖HfX − Yf‖p (8)

Parameter p refers to Lp norm. Note that when p = 2 the
likelihood term corresponds to a Gaussian. Hf is a sparse
matrix which is used to represent the blurring and downsam-
pling process. The estimated motions of LR frames, against

its reference frame, are used in Hf . This is in order to use
additional information from other close frames in the super-
resolution process. After including the regularization term, a
HR image solution can be obtained by minimizing the cost
function:

X̂ = arg Min
X

F∑
f=1

‖HfX − Yf‖p + βΨ(X) (9)

In equation (9), function Ψ represents the prior/regularization
term. In our case, this takes the form of a Gaussian Scale
Mixture SαS approximating a SαS density:

Ψ(X) =

N∑
i=t

ωt√
2πδt

exp(− (φ(X))2

2δt
2 ) (10)

where φ(X) represents the adjacent pixel gradient in two di-
rections (horizontal and vertical), ωi is the weighting/scaling
parameter for each Gaussian component. These parameters
are estimated as explained in previous section.

Finally, the proposed alpha-stable MRF super resolution
method is implemented through the following equation:

X̂ = arg Min
X

F∑
f=1

‖HfX − Yf‖pp+β
z2MN∑
i=1

(WN ·GN (φi(X)))

(11)

where β is a tuning parameter for the prior term. WN is a
ten elements scaling vector used to form the approximated
SαS and GN represents the corresponding ten Gaussian dis-
tributions. BothWN andGN are obtained using equation (7).
Because the cost function is not convex, gradient descent op-
timization is not suitable for finding a global minimum of the
objective function. Hence we have to resort to other, non con-
vex methods. Metropolis algorithm and Gibbs sampler are
two often used random search methods. In order to help the
algorithm jump out from a local minimum into a global mini-
mum, same strategies employed in these method include: not
always pursuing a descented energy value, as occasionally an
energy increase is allowed.

It is well known that when a random search method is em-
ployed for MAP estimation, the computational cost becomes
enormous. The Iterated Conditional Mode (ICM) algorithm
presented in [13] is a computationally acceptable alternative
in solving MAP super-resolution problems. ICM is employed
in our method as part of a succession of steps including:

1. Estimate the SαS distribution’s parameters from the
LR frame. Find the weighting parameter of the Gaussian scale
mixture by using the method described in [9], and construct-
ing the analytic expression of the SαS distribution.

2. Initial guess the HR frame from LR frame by using
cubic-interpolation, and estimate the sub-pixel motion of LR
frames against the reference frame.
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3. For i from 1 to z2MN , update the value of Xi that
minimises:

X̂ = arg min
X

(
(Y −HX)2+

β

z2MN∑
i

(ln(

N∑
t=1

ωt√
2πδt

exp(− (φi(X))2

2δt
2 )))

)
(12)

4. Repeat stage (3) iter times. We note that in most of the
experiments, 5 or 6 iterations were sufficient to produce good
results.

Throughout the experiments, the parameter β is fixed at
0.03 suggesting robustness of the algorithm over various im-
ages. In the first step of approximating the mixtures, using
ten Gaussian terms is enough to provide a good SαS ap-
proximation. In equation 12, X and Y are both rearranged
in lexicographic order, matrix H represents the blurring and
decimation operator.

5. EXPERIMENTAL RESULTS

We assess the performance of our proposed SR algorithm by
calculating the peak signal-to-noise ratio (PSNR), defined as

PSNR = 10log10
NP

‖a− b‖
(13)

where a and b are the estimated and original HR images, and
the pixel values are normalized to be in [0,1]. Apart from
measuring the PSNR of super resolved images, the structural
similarity (SSIM) [14] was also used to measure the recon-
struction quality. Compared to the more traditional PSNR and
mean squared error (MSE), SSIM has been proven to be more
consistent with human eye perception. The SSIM is given by

SSIM(a, b) =
(2µaµb + c1)(2δab + c2)

(µ2
a + µ2

b + c1)(δ2
a + δ2

b + c2)
(14)

where µa and µb represent the mean values, δa and δb are
their variances, and δab is the covariance. The SSIM mea-
sure should be close to unity for an optimal effect of SR re-
construction. Our SSIM results and the corresponding PSNR
values are summarized in Table. 1.

For comparison, we considered a number of methods in-
cluding: the Gaussian Markov Random Field Super Resolu-
tion [3], (GMRF ); the robust SR method based on bilateral
TV priors [6] (BTV ); Generalized Gaussian MRF Super Res-
olution [4](GGMRF ).

In the experiments real life video data was used. Video
sequence ‘Lab’ is shot by a handheld camera. The resolution
of it is normalized to 180 × 144. To simulate the effect of
camera point spread function, the HR images were convolved
with a symmetric Gaussian low-pass filter of size 3 × 3 with
standard deviation equal to one. The camera blurred images

were downsampled by a factor of 2 in each direction. 20 adja-
cent low resolution frames were used to obtain a single super
resolved frame.

The results are shown in Fig.2. The enhancement of the
resolution of proposed method over the original image can be
clearly noticed. Moreover, the proposed SR method exhibit
clear visual quality beyond other methods. As what we are
expecting, the objects edge are more clear after the SR pro-
cess. Table. 1 indicates that our method outperforms other
methods in terms of both PSNR and SSIM.

6. CONCLUSIONS

In this paper, we presented a novel method for the problem
of increasing the spatial resolution of video frames. The
Bayesian super-resolution technique is studied, together with
four different prior models: approximated SαS, GGMRF,
GMRF and BTV. Besides, some basics of the alpha stable
distribution are also introduced in paper. Simulation results
have shown the superiority of the proposed algorithm with
respect to three the recently proposed techniques. In future,
we plan to extend our framework to more general super res-
olution applications characterised by more complex motion
models.
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