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ABSTRACT

Optimal linearly constrained minimum variance (LCMV) fil-

tering methods have recently been applied to fundamental fre-

quency estimation. Like many other fundamental frequency

estimators, these methods are constructed using an estimate

of the inverse data covariance matrix. The required matrix in-

verse is typically formed using the sample covariance matrix

via data partitioning, although this is well-known to adversely

affect the spectral resolution. In this paper, we propose a fast

implementation of a novel optimal filtering method that uti-

lizes the LCMV principle in conjunction with the iterative

adaptive approach (IAA). The IAA formulation enables an

accurate covariance matrix estimate from a single snapshot,

i.e., without data partitioning, but the improvement comes at

a notable computational cost. Exploiting the estimator’s in-

herently low displacement rank of the necessary products of

Toeplitz-like matrices, we form a computationally efficient

implementation, reducing the required computational com-

plexity with several orders of magnitude. The experimental

results show that the performance of the proposed method is

comparable or better than that of other competing methods in

terms of spectral resolution.

Index Terms— Fundamental frequency estimation, opti-

mal filtering, data adaptive estimators, efficient algorithms

1. INTRODUCTION

There exists a multitude of signal processing applications in

which the fundamental frequency is an essential parameter in-

cluding, for instance, parametric coding of audio and speech,

automatic music transcription, musical genre classification,

tuning of musical instruments, and separation and enhance-

ment of audio and speech sources. Due to the importance of

knowing the fundamental frequency, numerous of approaches
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and methods have been proposed for estimating this param-

eter (see, e.g., [1–5] and the references therein). Typically,

most such estimators utilize an estimate of the sample covari-

ance matrix or its inverse, both commonly being formed by

partitioning the available measurement into sub-vectors and

forming the outer-product covariance matrix estimate. As is

well-known, this approach adversely affects the achievable

spectral resolution, and there is therefore an interest in de-

veloping methods that achieve a higher spectral resolution.

In [6], Jensen, Christensen and Jensen examined alternative

of forming the covariance matrix estimate using the iterative

adaptive approach (IAA) presented in [7]. The IAA estimate

is a non-parametric, data-dependent, spectral estimate that

does not require a data partitioning of the measurements. The

estimate is instead formed iteratively, alternatingly by esti-

mating the spectral amplitudes of the measurement as well as

the covariance matrix formed from this amplitude spectrum.

Generally, the IAA-based estimation techniques are able to

provide accurate estimates even when only a few samples

are available. However, the improved performance comes at

a cost of a considerable computational complexity. In this

work, we improve on the earlier IAA-based pitch estimation

algorithm presented in [6]. As the resulting estimate will suf-

fer from a high computational complexity, we here introduce

a computationally efficient implementation of the resulting al-

gorithm, extending recent work on efficient IAA implementa-

tions [8, 9].

2. FUNDAMENTAL FREQUENCY ESTIMATION

As audio and voiced speech signals are quasi-periodic, one

may well model such signals as (see, e.g., [5])

x(n) =

L
∑

l=1

αle
jlω0n + w(n), (1)

for n = 0, . . . , N − 1, where L is the number of harmonics,

αl = Ale
jφl , with Al > 0 and φl denoting the real-valued
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amplitude and the phase of the lth harmonic, ω0 is the funda-

mental frequency, and w(n) is a complex-valued noise pro-

cess. For simplicity, we assume that the model order, L, is

known, noting that it may be obtained using a model order

estimator [10, 11], or by forming the model order and funda-

mental frequency estimation jointly, reminiscent to the ideas

presented in [5]. The problem of interest is thus estimating

ω0 from (1), without making any strong assumptions on the

statistics of the noise process. This may, for instance, be done

using the optimal filtering method introduced in [12], being

based on an optimal harmonic LCMV (hLCMV) filter. Con-

sider M time-reversed samples from (1) in vector format

xM (n) =
[

x(n) x(n− 1) · · · x(n−M + 1)
]T
, (2)

for n =M − 1, . . . , N − 1, with (·)T denoting the transpose,

and introduce the FIR filter h =
[

h(0) · · · h(M − 1)
]H

,

from which the output is given by y(n) = hHxM (n), where

(·)H denotes the conjugate transpose. The output power of

the filter is then

E{|y(n)|2} = hHRh, (3)

where R = E{xM (n)xH
M (n)}, with E{·} denoting the sta-

tistical expectation. The optimal filter response is found using

the LCMV principle, such that the filter is designed to have a

unit gain at the harmonic frequencies while having maximum

noise suppression, for l = 1, . . . , L,

min
h

hHRh subj. to hHzM (lω0) = 1, (4)

where zM (ω) =
[

1 e−jω0 · · · e−j(M−1)ω0

]T
, implying

that [5]

ĥ = R−1ZM

(

ZH
MR−1ZM

)−1
1, (5)

with ZM =
[

zM (ω0) · · · zM (Lω0)
]

. An estimate of the

fundamental frequency may thus be found by inserting (5)

into (3) and maximizing the output power, yielding

ω̂0 = arg max
ω0∈Ω0

1T
(

ZH
MR−1ZM

)−1
1 , (6)

where Ω0 is a set of candidate fundamental frequencies. The

covariance matrix R is generally unknown, and is commonly

replaced by the sample covariance matrix

R̂ =
1

N −M + 1

N−1
∑

n=M−1

xM (n)xH
M (n), (7)

where, to ensure that R̂ is invertible, the length of the sub-

vectors, xM (n), are restricted toM < N
2 +1, thereby limiting

the spectral resolution to be on the order of 1/M [11]. A

direct implementation of the estimator requires roughly

CCov ≈M3 +M2N̄ + F̄ (ML2 + LM2 + L3) (8)

operations, where N̄ , N − M + 1 and F̄ , F/L, with

F = |Ω0| being the size of the uniformly spaced grid of fre-

quencies on the unit circle where the search for the optimum

ω0 is conducted. Typically, F ≫ N and due to the nature of

the problem, the search is limited up to F̄ . We proceed to re-

call the IAA-based covariance matrix estimate, which is then

used in conjunction with the above optimal filtering method.

However, it should be stressed that this covariance matrix es-

timate could similarly be used in conjunction with other co-

variance based fundamental frequency estimators, thereby of-

fering a similar improved spectral resolution. Following the

usual IAA notation, let

xN =
[

x(0) x(1) · · · x(N − 1)
]T
. (9)

Then, the IAA estimate is formed by iteratively estimating the

complex amplitudes, α(ωk), and the corresponding covari-

ance matrix, R̃, until practical convergence, as (see [7,13] for

further details)

α̂k =
zTN (ωk)R̃

−1xN

zTN (ωk)R̃−1z∗N (ωk)
(10)

R̃ =
K−1
∑

k=0

|α̂k|
2
z∗N (ωk)z

T
N (ωk) (11)

for k = 0, 1, . . . ,K − 1, with R̃ initialized to the identity

matrix, IK , implying that the complex amplitudes are initial-

ized using the FFT of the sample vector. Typically, 10-15

iterations are sufficient for convergence [7]. The expression

in (10) can be seen as a filtering operation if one rewrites it as

α̂k = hH
IAAxN , (12)

where hIAA = R̃−1z∗N (ωk)[z
T
N (ωk)R̃

−1z∗N (ωk)]
−1. We

form the IAA-based optimal LCMV filter (IAA-LCMV) as

ĥIAA-LCMV = R̃−1Z∗

N

(

ZT
NR̃−1Z∗

N

)−1

1, (13)

where ZN are defined analogously to ZM . That is, one com-

bines the filter design in (5) with the IAA covariance matrix

estimate, as obtained after convergence has been achieved.

Combining (12) and (13), an estimate of the expected esti-

mated output power is obtained as

E{P̂IAA-LCMV} = 1T
(

ZT
NR̃−1Z∗

N

)−1

1 (14)

= 1TGGG−11, (15)

where GGG , ZT
NR̃−1Z∗

N .

The fundamental frequency is then estimated by maximiz-

ing the output power, i.e.,

ω̂0 = arg max
ω0∈Ω0

E{P̂IAA-LCMV} . (16)
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A direct implementation of (16) requires

CIAA ≈ m(N3 + 3N2K) + F̄ (N2L+ L2N + L3) (17)

operations, where K denotes the size of the grid of frequen-

cies utilized in the IAA implementation, and m is the number

of IAA iterations, with, usually, K ≤ F .

3. EFFICIENT IMPLEMENTATION

Alternatively, an efficient implementation of (6) and (16) may

be formed by means of a implementation using Gohberg-

Semencul (GS) factorizations of the involved matrices. Con-

sider a Hermitian matrix P ∈ CN×N , and define the lower

shifting matrix as

D =

[

0T 0
IN−1 0

]

. (18)

Clearly, (D)
N

= 0. Then, the displacement of P wrt D and

DT is defined as ∇D,DTP , P−DPDT .Suppose that there

exist integers ρ and σi ∈ {−1, 1}, i = 1, . . . , ρ, such that

(see also [14]) ∇D,DTP =
∑ρ

i=1 σitit
H
i with ti denoting

the so-called generator vectors. Then, the GS factorization

of P may be expressed as P =
∑ρ

i=1 σiL(D, ti)L
H(D, ti),

where L(D,b) denotes a Krylov matrix of the form

L(D,b) =
[

b Db D2b · · · DN−1b
]

.

While this decomposition can be used to perform computa-

tionally demanding tasks such as matrix-vector multiplication

in an efficient way, it does not provide an efficient way of

computing the matrix itself when only its displacement repre-

sentation is available. However, as

P−DPDT =

ρ
∑

i=1

σitit
H
i , (19)

multiplying both sides of (19) by ej+1 and noting that

DT e1 = 0 and DT ej+1 = ej , where ej denotes a N × 1
vector with a one at the jth entry and zeros elsewhere, implies

that P may be recovered column-wise as

pj =























ρ
∑

i=1

σitit
H
i ej , j = 1

Dpj−1 +

ρ
∑

i=1

σitit
H
i ej j > 1

, (20)

for j = 1, 2, . . . , N , with pj denoting the jth column of

P. Estimating P in this way will require roughly ρN2 op-

erations. The coefficients of the trigonometric polynomial

ϕ(ω) , zH(ω)Pz(ω) can then be formed at a cost of approx-

imately ρN log2N using the method detailed in [15]. How-

ever, to form the coefficients of the trigonometric polynomials

ψ(ω) , zH(l1ω)Pz(l2ω) (21)

for l1 and l2 ∈ Z , one needs to consider the augmented fre-

quency vectors

zk(ω) = Slk

[

zT (lkω) ×
]T

(22)

for k = 1 or 2, where Slk is the selection matrix with ze-

ros and ones indicating the presence or absence of a har-

monic component, respectively, SlkS
T
lk

= IlkN , and × de-

notes terms of no relevance. Using (22), (21) may be written

as

ψ(ω) = zH1 (ω)P̄z2(ω) =

l2M−1
∑

κ=−l1M+1

c̄κe
−jω (23)

where P̄ , ST
l1
PSl2 is an expanded rectangular matrix of size

(l1N)× (l2N). Thus, the coefficients ĉκ can be computed by

summing all elements upon the kth diagonal of P̄. In practice,

there is no need to form P̄, as one can easily show that it may

be computed recursively as

C̄i+1 = C̄i +





0(l2−i)N

(Sl1pi+1)
0l2i



 (24)

for i = 0, 1, . . . , N−1 where C̄ ,
[

c̄−l1N+1 · · · c̄l2N−1

]T
,

at a cost of no more than N2 operations. The case when

ψ̃(ω) = zT1 (ω)P̄z∗2(ω) is treated similarly.

Using (20) and (24), we proceed to develop efficient

implementations for (6) and (16), noting that the displace-

ment representation of the inverse covariance estimates (7)

and (11) can be computed using the fast schemes presented

in [15] and [8], at cost of 4.5M2 + 1.5N log2(N) and N2

operations, respectively. The inverse covariance matrices

are subsequently computed from their displacement repre-

sentation using (20), at a cost of 2M2 and N2, respectively.

Using (24), the coefficients of the trigonometric polynomials

involved in (6) can then be formed at a cost of 0.5L2M2

operations, noting that due to the Hermitian symmetry, only

half of the polynomials actually have to be estimated. Eval-

uating these on a uniformly spaced grid of frequencies using

the Fast Fourier Transform (FFT) can be done at a cost of

approximately 0.25L2F log2 F , or 0.25L2F log2(F/L) if

using FFT algorithms comprising output pruning. Finally,

one may compute (6) at a cost of L3F̄ = L2F operations,

implying that the overall computational cost of the proposed

approach is approximately

CF,Cov ≈ 6.5M2 + 1.5N log2(N) + 0.5M2L2 +

F [0.25 log2(F/L) + 1]L2.

Using similar arguments, (16) is implemented at a cost of

CF,IAA ≈ m
{

N2 + 5N log2(2N) + 1.5K log 2(K)
}

+
{

0.5N2 + F [0.25 log2(F/L) + 1]
}

L2

operations, with m denoting the number of IAA iterations,

and where (10) and (11) are implemented using the fast

schemes of [8, 9]. The computational reduction achieved by

the proposed implementation is illustrated in Fig. 1.
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Fig. 1: Computational complexity of the hLCMV fundamen-

tal frequency estimation algorithms using the data covariance

approach where M = N/2 + 1, the IAA approach, where

m = 10 and K = 4N , and their fast implementation. In all

cases, F = 10N and L = 5.

4. NUMERICAL EXAMPLES

We proceed to evaluate accuracy of the efficient implementa-

tion of the proposed estimator. For this investigation, we

used a harmonic signal with L = 5 in white Gaussian

noise at an SNR of 20 dB, with the SNR being defined as

SNR = 10 log10(σ
−2
w

∑L

l=1 |αl|
2). The number of grid

points used for the IAA-based covariance matrix estimate

was K = 1000, the number of candidate fundamental fre-

quencies was |Ω0| = 5000, and the fundamental frequency

was samples from U(0.2, 0.3). Using this setup, we mea-

sured the average absolute error over all frequency points

and Monte-Carlo simulations for different Ns, and the results

are provided in Table 1. We note that the error between the

brute-force and fast implementations are close to numerical

precision for this range of Ns. Then, we evaluate the perfor-

mance of the proposed method, investigating the influence of

K, N , the expected fundamental frequency, and the spacing

between fundamental frequencies (the last in a two source

scenario). Initially, we consider a noisy harmonic signal as in

the previous investigation.Fig. 2a shows the measured mean

squared error (MSE) of the proposed estimator defined in (16)

(hIAA) as a function of K, with the fundamental frequency

being samples from U(0.3, 0.4).
The results show the performance of the estimators for

two different sample lengths, i.e., N = 40 and N = 80. As

is clear from the figure, one needs more frequency points

when N is increased to achieve the maximum possible

performance. For N = 40, K ≈ 400 seems to be suf-

ficient, whereas at least K ≈ 1200 frequency points are

needed for N = 80. Fig. 2b shows the MSE as function

of N , for K = 1000 frequency grid points, showing the

performance of the IAA-based estimator as compared with

the harmonic WLS (hWLS) method [1, 5], the harmonic

LCMV (hLCMV) method [5], the harmonic approximate

N 40 60 80 100 120 140

MAE 407 3.42 0.27 0.17 0.20 0.21

Table 1: Mean absolute error (MAE) (·10−12) measured for

different Ns.

NLS (hANLS) method [5], and the harmonic MUSIC (hMU-

SIC) method [5]. One may note from the figure that the hIAA

shows better performance as compared to the other methods

for short data lengths, say N < 30. Examining the influence

of the fundamental frequency, Fig. 2c shows the MSE as

a function of the expected fundamental frequencies E[ω0],
where in each simulation, the fundamental frequency was

sampled from E[ω0] + U(−0.001, 0.001), using N = 35 and

K = 1000. As is clear from the results, the hIAA estimator

clearly outperforms the other methods for low expected fun-

damental frequencies (0.25 < E[ω0] < 0.3).Finally, we com-

pared the discussed methods in a scenario with two harmonic

sources, examining two sources with L = 3 unit amplitude

harmonics. The ratio between each of the sources and a white

Gaussian noise source was 40 dB. In each simulation, the

fundamental frequency ω1
0 of first source was sampled from

U(0.299, 0.301) and the fundamental frequency of the second

source was ω2
0 = ω1

0 +∆ω0, where ∆ω0 is the spacing, using

N = 60, and K = 1000. As seen in Fig. 2d, the performance

of the hIAA method is comparable to that of the hMUSIC

method and, generally, better than the performance of the

hLCMV and hANLS methods. All the above presented re-

sults have been obtained using 500 Monte-Carlo simulations.
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