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ABSTRACT

This paper describes a statistical 3-D digital watermarking
method using distributions of distances measured along mesh
surfaces. The proposed method employs a mesh propagation
procedure called the Fast Marching Method (FMM), which
defines regions of equal geodesic distance width calculated
with respect to a reference location on the mesh surface.
The embedding is performed by statistically changing the
normalized distribution of local geodesic distances. Vertices
are moved onto the plane of triangles containing the current
geodesic front line as generated by the FMM. Such vertex
perturbations ensure that the resulting distortions in the 3-D
graphics is minimal.

Index Terms— 3-D watermarking, surface preservation,
Fast Marching Method, geodesic distances.

1. INTRODUCTION

This paper describes an approach to blind digital watermark-
ing of shapes represented as meshes. The aim of the proposed
methodology is to introduce a minimal distortion in order to
preserve the mesh surface following watermarking. Water-
marking of graphics has been performed in the spatial domain
as well as in the transform domains and can be characterized
as deterministic or statistical based on the the way how the
watermark embedding is performed. Usually, deterministic
methods allow a higher capacity of information embedding,
making them suitable for steganography, but achieve a lower
robustness to attacks [1].

Statistical 3-D watermarking embedding was used in [2,
3, 4]. In [2] statistical distributions of distances from the mesh
surface to the local principal data axis was used for water-
marking relying on the local object symmetry. Noise like per-
turbations modify such distributions which otherwise would
be quasi-uniform. The distance from the object center to ver-
tices on its surface is considered as a statistical variable in
[3] for embedding watermarks. Two watermarking statisti-
cal methods are used in [3] by changing either the mean or
the variance in the statistics of such distances. Most of the
existing 3-D mesh watermarking methods create bump like
changes on surfaces of 3-D objects.
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The geodesic distance, which takes into account the local
surface variation, has been shown to be the most appropri-
ate measure for calculating the distance between two differ-
ent points on a mesh [5]. The Fast Marching Method (FMM)
was proposed for the low-cost calculation of geodesic dis-
tances between two locations on the object mesh surface [6,
7]. FMM evaluates geodesic distances with respect to a refer-
ence point location.

In this paper we propose a 3-D watermarking method,
based on the approach from [4], by embedding bits of infor-
mation in distributions of geodesic distances calculated from
the mesh surface. The watermark reference system is defined
by the source location and by appropriate alignment. We split
the object surface into strips of equal geodesic width, calcu-
lated by using FMM [6, 7]. The mean or the variance of dis-
tributions of geodesic distances corresponding to the vertices
from each strip are changed when embedding each bit. The
Vertex Placement Scheme (VPS) algorithm is proposed for
displacing vertices along directions which are perpendicular
to the geodesic front lines aiming to preserve the original ob-
ject surface. Section 2 outlines the initialization procedure,
while Section 3 describes how equal-sized object regions are
generated on the mesh surface. Section 4 details the Vertex
Placement Scheme (VPS) procedure for watermark embed-
ding. Section 5 provides the experimental results, while Sec-
tion 6 provides the conclusions of this study.

2. INITTIALIZING THE GEODESIC FRONT
PROPAGATION WATERMARKING METHOD

The proposed watermark embedding method has the follow-
ing steps: defining the reference location, segmenting the ob-
ject surface into strips, forming geodesic distance histograms
and the vertex placement method for watermark embedding.
In order to define a robust source location we use the vol-
ume moment alignment. The principal axes of the object are
obtained by eigen-decomposing the covariance matrix calcu-
lated from the coordinates of all 3-D object vertices. The re-
sulting eigenvalues characterize the extension of the object
along its principal axes whose directions are defined by the
corresponding eigenvectors. In order to define a unique align-
ment, we propose two constraints to be used together. Firstly,
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the three principal axes must conform the right hand rule such
that the direction of the third axis will be defined as the cross
product of the first two. Furthermore, the valid alignment sat-
isfies the condition that the third order moments of the object
are positive. By following these constraints, the principal axis
alignment is unique.

A random direction is cast from the object center accord-
ing to a secret key. The starting point is defined as the inter-
section between the direction of this vector from the object
center and the mesh surface. There are two extreme situa-
tions: when there is no intersection with the object surface
and when there are multiple intersections. In the former case
we proceed to generate additional random directions until an
appropriate intersection with the object surface is found. In
the latter case the intersection which is the furthest away from
the object center is chosen as the source location.

3. ISO-GEODESIC MESH STRIP GENERATION

Let us define T},;, = min({7'(x),Vx € O}) and T)00 =
max({T(x),vx € O}) as the minimum and maximum
geodesic distances calculated for the object O from a source
location s. Generally, the number of vertices whose geodesic
distance is close to 1},;, and 1,,,, would be too small in
order to be statistically relevant so they are not considered
for watermark embedding. Therefore, we trim the range of
acceptable geodesic distances to the range :

T(Vj) C ((1_E)Tmin+5TmaxvsTmin+(1_ ) maz) (l)

where ¢ € (0,0.2) is used for the vertices which are close
to extremes, according to their geodesic distance from the
source location. Then, for a watermark code of M bits, the
object mesh is segmented into M strips, each used for embed-
ding a single bit. Consequently, the geodesic distance width
for each strip is defined as:

(1 —2¢) (Thaa @)

M

Let us consider B; as the set of vertices which are located
in a specific range of geodesic distances calculated from the
source location s and characterizing a mesh strip on the object
surface :

Bi = {Vj cO | Tonin + (Z — I)Tb < T(Vj) < Tonin + ’L'Tb}

(3)
fori = 1,..., M. T, should be large enough in order to

define regions which contain a statistically consistent number
of vertices available for watermark embedding.

After splitting the graphical object into strips of equal
geodesic width, each strip is associated with a bit from the
watermark code. In the following we consider statistical wa-
termarking of distributions of geodesic distances for the ver-
tices from inside each strip. For each bit of 0 or 1 we embed
specific statistical changes, either in the value of the mean
or in that of the variance of the local geodesic distances, by
means of histogram mapping functions, as in [3, 4]. The

T, = ).

shape of histograms is changed and the corresponding vari-
ables are mapped back into the displaced location of vertices
onto the surface of objects [4].

4. CHANGING VERTEX GEODESIC DISTANCES BY
VERTEX PLACEMENT SCHEME

In the following we describe how to displace vertices in order
to conform with the distributions of the watermarked geodesic
distance variables while not visibly perturbing the mesh sur-
face. The proposed watermark embedding procedure for a
particular triangle AABC on the mesh surface, is called the
vertex placement scheme (VPS). The study can be easily ex-
tended for all the vertices inside the strip B; and to the entire
object O. Let us consider the vertices A and B as having their
geodesic distances T(A) and T'(B), T(A) < T(B). When
the angle /C = 6 inside triangle AABC is acute then the
update scheme is monotone, i.e. T'(A) < T(B) < T'(C). Let
us assume that the lengths of the triangle sides are a = || BC/,
b = ||AC| and ¢ = ||AB|| as shown in Fig. 1 and denote the
geodesic distances between its vertices, calculated along the
FMM front propagated with respect to the source location as:

=T(C)-T(A) (4)
= T(B) — T(A) (5)
h = T(C) T(B)=t— (6)

Kimmel and Sethian have shown in [7] that the value of ¢ can
be calculated using FMM by assuming known T'(A), T'(B)
and the geometry of AABC, according to the equation :

(a®+b*—2abcos 0)t*+2bu(acos O—b)t+b*(u*—a?sin §) =0

)

The solution ¢ must satisfy two conditions:

{u<t ®)

(t u)
acosf < < s

u < t means that T'(C) > T(B) > T(A) which conforms to
the monotone property. The second condition of equation (8)
means that 7'(C') must be updated from within AABC. Thus,
the updating procedure is given as:

T(C) — min{T(C),t +T(A)}, if (8) are fulfilled
(€)= min{T(C),b+ T(A),a+ T(B)}, otherwise
AP ©)

Cl
Fig. 1. Vertex perturbation from C to C’. Line BG is the approx-
imation of the geodesic distance wave and CG and C'G represent
gradients to the wave front.
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An extreme situation for ¢ as solution from equation (7) is
when 6 = 7/2. In this case we have the minimum bound for
t, constraining the vertex placement location, as :

2
tmin:bu+ab2a2+b2—u2 (10)
a? +b?
When 6 is obtuse, triangles are unfolded and split into two
acute angle triangles and then we can proceed with the updat-
ing scheme, [7].

In the following we show that perturbations of geodesic
distances, according to the proposed VPS, can be embedded
into the FMM method by ensuring a minimal change along
the geodesic front. Let us consider that vertices from F de-
fine the current propagation front line for FMM while D cor-
responds to the set of all vertices from which the geodesic
propagation front has passed. Let us assume that in the case
of AABC we have A and B fixed while C changes to C’ fol-
lowing watermarking by VPS. Assuming that {A, B} € D,
the watermark embedding is performed along the geodesic
front vertices C' € F. We associate the statistical variables g
and g, derived according to the histogram mapping functions,
to the geodesic distance T'(C) = g and to that of a new lo-
cation C’, respectively, which would result after watermark
embedding. The problem addressed in the following is about
how to move the vertex C' to a new location C’, such that its
new geodesic distance satisfies 7'(C”) = §, while ensuring
that the graphical object suffers a minimal distortion.

The proposed VPS consists of the following sequence of
steps for vertices from a segmented strip B; :

1. Calculate g according to the histogram mapping.

2. Choose a vertex C' € B; in the downwind direction of
FMM and calculate 7'(C').

3. While T'(C') # g repeat Steps 4-6.

4. Locate A, B € N(C) such that all three form a triangle
which contributes to the minimum path calculation for
T(C).

5. Apply VPS in AABC to move C to C’ such that
T(C") =g.

6. Set C — (', update the geodesic distance T'(C') by
using only vertices from the set D and go to Step 3.

Step 1 corresponds to the sampling of the watermarked
distribution, while step 2 represents the current positioning
on the object surface by using the Fast Marching Method.
The VPS procedure is shown in Fig. 1. When the condi-
tions from (8) are fulfilled, there is a point G inside AABC
such that CG L BG and the Euclidean distance ||CG|| = h,
with h defined in (6). When embedding the updated geodesic
distances back into the surface and when replacing i with
ICG]| in equation (6) results into T(G) = T(B). BG is
the approximation of the equal geodesic curve located at the

distance T'(B) from the source location. Consequently, the
VPS procedure transforms AABC' into AABC’ such that
T(C") = g, following watermarking, as illustrated in Fig. 1.
The watermark extraction is blind and is performed by ex-
tracting histograms of geodesic distances corresponding to
vertices from each mesh strip and applying a statistical test
in order to determine the embedded bit [4].

5. EXPERIMENTAL RESULTS

In the following we provide the results when watermarking a
set of four objects: Bunny, Head, Statue and Dragon. These
objects are displayed in Fig. 2 and their mesh characteristics
are provided in Table 1. We use the abbreviation ProMean or
ProVar for the methods which embed watermarks by chang-
ing the mean or the variance, respectively, of the geodesic
distance distribution. Before segmenting the objects into iso-
geodesic strips, they are trimmed by considering ¢ = 0.1 in
(1). The proposed methodology is compared with the graph-
ics watermarking methods proposed in [3] which are called
ChoMean and ChoVar for changing the mean or variance of
distributions of distances from the object center to its vertices.

'1 [

(c) Statue (d) Dragon

Fig. 2. 3-D objects used in the experiments.

Object | No. Vertices | No. Faces
Bunny 34,835 69,666

Head 134,345 268,686
Statue 187,638 375,272
Dragon 422,335 844,886

Table 1. Characteristics of the graphical objects used in the study.

One of the aims for watermarking graphical objects is to
achieve a minimal surface distortion. The visual quality of the
watermarked objects is measured by a method called Metro,
proposed in [8], which approximates the Hausdorff distance
between two objects:

E(0,0) = max{E;(0,0), E,(0,0)} (11)
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where E(O, @) represents the root mean square error
(RMS) of distances between the vertices from O and the
closest points from the surface of @, while E,(O, O) rep-
resents the RMS between the vertices of O and the closest
points from the surface of the object O. All distances are
calculated as fractions of the diagonal of the bounding box
enclosing the mesh. Table 2, provides the distortion results,
measured by E(O, ®) from (11) for all four methods when
watermarking the set of objects from Fig. 2. As can be
observed from Table 2, the graphical object distortion intro-
duced by the proposed watermarking methodology is much
lower than that produced by ChoPro and ChoVar methods
[3]. Fig. 3 displays the visual effects of the proposed wa-
termarking methods using zoomed views of graphical object
surfaces. The methods from [3] introduce visible staircase
artifacts as it can be seen in these figures.

Object | ProMean | ProVar | ChoMean | ChoVar
Bunny 0.26 0.14 0.81 0.39
Head 0.11 0.06 0.37 0.19
Statue 0.23 0.12 0.94 0.40
Dragon 0.25 0.12 0.90 0.47

Table 2. Watermarked object distortion, where all results are mul-
tiplied with 10™%.
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Fig. 3. Comparison of visual distortion by displaying zoomed de-

tails. (a) Original, and watermarked using (b) ProMean, (c) ProVar,
(d) ChoMean, (e) ChoVar.
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In the following we test the robustness of the 3-D water-
marking methods to additive noise, smoothing, mesh simpli-
fication, and uniform re-meshing.

We consider additive random noise according to the fol-
lowing distortion equation:

Vi = Vi + €[ Vima | B (12)

where Vv; represents the distorted watermarked vertex v;, € €
[0,1] is the percentage of ||V,qz| Which corresponds to the
largest Euclidean distance measured from the object center
to each vertex, 5) is a unitary vector with random direction.

The plots from Fig. 4 show the robustness against noise when
varying € for all four methods, ProMean, ProVar, ChoMean
and ChoVar for all four graphical objects. From these plots it
can be observed that ProMean and ChoMean methods provide
better results than ProVar and ChoVar.
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(c) Statue (d) Dragon
Fig. 4. Watermark robustness to additive noise.

T S S )

“o-..
...

02/+-Promean 02

2 4 6 s 0 12 4 1B 1 2 2 4 6 & 10 2 1w 18 18 2
‘Smooth terations ‘Smooth leration

(a) Bunny (b) Head

09 S m3e =1 09
IS
07 =t
2os-
Sos-
Zoa
o
02]-4-prome
~-ProVar

017 o Chom

(c) Statue (d) Dragon

Fig. 5. Watermark robustness to surface smoothing.

We use Laplacian smoothing as in [9] for testing the
robustness to surface smoothing. The plots displaying the
smoothness robustness are provided in Fig. 5 and it can be
observed that ProMean provides slightly better results for
Bunny, Head and Statue graphical objects, while ProVar is
better for Dragon. This is due to the fact that Dragon is an
object characterized by a larger variance of its surface which
benefits a watermarking method based on variance change.

The quadratic metric simplification software, described in
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Fig. 6. Watermark robustness to mesh simplification.

[10], was used for testing the robustness at mesh simplifica-
tion. Fig. 6 contains the plots showing the watermark resis-
tance to mesh simplification attack for the objects when us-
ing all four methods. ProVar and ProMean are slightly less
robust the Cho’s methods at this attack. We compare the
robustness of all four watermarking methods against the re-
sampling attack by using the algorithm proposed in [11]. This
attack consists of sampling vertices from the graphical object
surface and connecting them in a way that is not related to
the original mesh. The number of sampled vertices represent
{100%, 80%, 60%, 40%, 20%} from the total number of ver-
tices in the original object. The watermark detection results
after this attack are shown in Fig. 7. The best results are pro-
vided by ProVar followed by ProMean for all four objects.

6. CONCLUSION

This paper proposes a 3-D watermarking methodology based
on statistics of geodesic distances defined by using the Fast
Marching Method (FMM). The graphical objects are seg-
mented into strips and distributions of geodesic distances
are defined according to the watermark code. Two different
statistical methods are employed for watermark embedding,
by modifying the mean or the variance of distributions of
geodesic distances. The vertices are changed using the Ver-
tex Placement Scheme such that the resulting object surface
distortion is minimal. The proposed methodology has low
computational demands and results in watermarks which are
robust to various mesh attacks except for object cropping.
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