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ABSTRACT
Wireless microphone networks or so-called wireless acoustic
sensor networks (WASNs) consist of physically distributed
microphone nodes that exchange data over wireless links.
In this paper, we propose a novel distributed distortionless
signal estimation algorithm for noise reduction in WASNs.
The most important feature of the proposed algorithm is that
the nodes broadcast only single-channel signals while still
obtaining optimal estimation performance, even in a sce-
nario with multiple desired sources or speakers (in exist-
ing distributed methods, this is achieved only in scenarios
with a single desired source). The idea is to create a one-
dimensional desired signal subspace by using the same ref-
erence microphone at all the nodes. Since the theory is based
on a distortionless signal estimation technique, namely lin-
early constrained minimum variance (LCMV) beamforming,
we will show that this reference microphone does not need to
be transmitted over the wireless link. We provide simulations
to demonstrate the performance of the algorithm.

1. INTRODUCTION

Traditional microphone arrays often have strict space and
power constraints, limiting the number of microphones and
the physical size of the array, especially in miniature and
portable devices (e.g., hearing aids or cell phones). Al-
though such microphone arrays exploit spatial properties of
the acoustic scenario, they only sample the sound field lo-
cally, i.e., in a small area. This limitation can be overcome by
distributing many microphone nodes over a large area, where
each node contains one or more microphones and facilities
for wireless communication and signal processing. These
nodes can then exchange microphone signals over wireless
communication links with nearby nodes or a central process-
ing unit. This yields a wireless microphone network, often
referred to as a wireless acoustic sensor network (WASN),
which is viewed as a next-generation technology for audio
signal acquisition and audio signal processing [1]. However,
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since WASNs consist of physically distributed microphone
nodes, they usually require dedicated audio processing algo-
rithms, preferably allowing for distributed computing.

Microphone arrays are often used for multi-channel noise
reduction or beamforming [2,3]. In this paper, we focus on a
noise reduction technique for WASNs, which is based on the
so-called linearly constrained minimum variance (LCMV)
beamformer. It provides a distortionless estimate of the de-
sired signal components in an arbitrarily chosen reference
microphone signal [3]. We envisage a distributed approach,
i.e., the noise reduction needs to be computed in the network
itself without gathering all the microphone signals in a cen-
tral processing unit. For the sake of an easy exposition, we
only address fully-connected networks where a signal broad-
cast by one node is received by all other nodes, but the results
can be relatively easily modified for partially connected net-
works, based on similar techniques as in [4].

Distributed noise reduction in WASNs has been ad-
dressed in earlier work [5–8]. In particular, the so-called ‘dis-
tributed adaptive node-specific signal estimation’ (DANSE)
algorithm [9] is able to achieve an optimal noise reduction in
a distributed fashion (see, e.g., [5]). The same holds for the
linearly constrained DANSE (LC-DANSE) algorithm, which
is an LCMV-based modification of DANSE. An important
feature of the (LC-)DANSE algorithm is that each node op-
timally estimates a desired signal component in its own ref-
erence microphone signal, rather than a joint network-wide
signal, which explains the ‘node-specific’ aspect. However,
it is shown that DANSE (and all of its extensions) can only
achieve optimal noise reduction if the nodes transmit N -
channel signals, whereN is equal to the dimension of the sig-
nal subspace containing the desired signals of all the nodes.
In a scenario with S desired sources, each node-specific ref-
erence microphone signal contains a different mixture of
these source, hence N = S.

The idea is now to transform this S-dimensional desired
signal subspace to a one-dimensional signal subspace by re-
moving this node-specific aspect in DANSE. Indeed, if each
node in DANSE would use the same reference microphone
signal, then N = 1 (even if S > 1) and so single-channel
broadcast signals are sufficient to achieve optimal noise re-
duction. However, this would require that each node is pro-
vided with this common reference microphone signal to lo-
cally compute its noise reduction filters, which significantly
increases the communication bandwidth1. In this paper, we

1This is especially true in partially connected networks where it is not
possible to directly broadcast a signal to all the nodes.
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will indeed use a common reference microphone signal for
all the nodes, but without explicitely broadcasting this refer-
ence signal. Instead, we use a distortionless noise reduction
framework which allows each node to generate a virtual ref-
erence signal that has exactly the same desired signal com-
ponent as the common reference microphone signal.

The new algorithm, referred to as ‘single-reference dis-
tributed distortionless signal estimation’ (1Ref-DDSE), has
several interesting advantages compared to DANSE. As al-
ready mentioned, it obtains an optimal noise reduction at
each node with only single-channel broadcast signals, even
in e.g. speech scenarios with multiple desired speakers. Fur-
thermore, one can choose a high-SNR microphone as the
common reference microphone, which improves robustness
against ripple of estimation errors. Indeed, DANSE has
some robustness issues in the sense that errors in the esti-
mation of signal correlation matrices at low-SNR nodes rip-
ple through the network, significantly affecting the noise re-
duction performance at all other nodes2 [5]. However, there
are also some minor drawbacks in using 1Ref-DDSE instead
of DANSE, i.e., the node-specific aspect is lost, and the
constraints that impose the distortionless response remove
some degrees of freedom that could have otherwise been
used for extra noise reduction. Furthermore, it is based on
LCMV beamforming, which requires robust subspace esti-
mation methods if the source-microphone transfer functions
are not known [3, 10].

2. DATA MODEL

Consider a WASN with a set of nodes K = {1, . . . ,K}.
Node k has access to Mk microphones, and the total number
of microphones in the WASN is denoted byM =

∑
k∈KMk.

Each microphone signal m of node k can be described in the
frequency domain as

ykm(ω) = xkm(ω) + nkm(ω), m = 1, ...,Mk (1)

where ω denotes the frequency-domain variable, xkm(ω) is
the desired signal component (e.g. a speech signal or a mix-
ture of multiple speech signals) and nkm(ω) is an undesired
noise component. All subsequent algorithms will be im-
plemented in the short-time Fourier transform (STFT) do-
main, where (1) is approximated based on finite-length time-
to-frequency domain transformations. For conciseness, the
frequency-domain variable ω will be omitted. All signals
ykm of node k are stacked in an Mk-dimensional vector yk,
and all vectors yk are stacked in anM -dimensional vector y.
The vectors xk, nk and x, n are similarly constructed. The
network-wide data model can then be written as y = x + n.

The desired signal components x are modeled as

x = As (2)

where s is an S-channel source signal, and A contains the
transfer functions from each source to each microphone. The
columns of A are referred to as the steering vectors, and the
subspace spanned by these steering vectors is referred to as
the steering subspace. We assume that x, A, and s are all
unknown, i.e., we envisage a blind approach. Therefore,
we will choose an arbitrary reference microphone, and try

2In the DANSE framework, this is avoided by using the so-called
‘robust-DANSE’ (R-DANSE) algorithm [5].

to estimate the desired signal component in this microphone
signal3, rather than the source signals in s. This reference
microphone is preferably a high-SNR microphone where all
desired sources have a strong component. This is to avoid
an ill-conditioned subspace estimation problem (see further).
Without loss of generality (w.l.o.g.), we choose the first mi-
crophone of node 1 as the reference microphone, hence we
estimate x11.

3. CENTRALIZED LCMV BEAMFORMING

We first assume that all microphone signals stacked in y are
available in a central processing unit (we will later extend
this to the distributed case). We will apply a multi-channel
spatial filter or beamformer w to y such that the output sig-
nal d = wHy is a good estimate of x11 (superscript H
denotes a conjugate transpose operator). We want to mini-
mize the residual noise variance wHn, while preserving an
undistorted version of the desired speech component, i.e.,
wHx = x11. In [3], this is achieved by solving the following
LCMV problem [11]

min
w

wHRnnw (3)

s.t. QHw = QHe1 (4)

where Rnn = E{nnH} (with E{.} the expected value op-
erator), e1 = [1 0 . . . 0]T (selecting the column of QH

corresponding to the reference microphone), and Q is an
M ×S matrix with columns spanning the steering subspace,
i.e., Q = AT with T a non-singular S × S transformation
matrix. The solution of (3)-(4) is given by

ŵ = R−1
nnQ

(
QHR−1

nnQ
)−1

QHe1 (5)

where Rnn can be estimated during noise-only frames, re-
quiring a so-called voice-activity detection algorithm when
applied in speech applications. In [3], it is proven that
ŵHx = x11, and hence the beamformer output yields an
undistorted version of the desired signal in the reference mi-
crophone.

It is noted that, even though it may be hard to obtain the
individual steering vectors in A, it may be relatively easy to
find an orthogonal basis for the steering subspace [3]. For
example, the eigenvectors corresponding to the S non-zero
eigenvalues of Rxx = E{xxH} = E{yyH}−E{nnH} in-
deed span the steering subspace defined by A, and can there-
fore be used to construct Q in (5). More advanced subspace
tracking algorithms can be found in [10, 12]. In the sequel,
we make abstraction of this subspace tracking algorithm, i.e.,
we assume that for any set of input signals an orthogonal ba-
sis for the corresponding steering subspace can be computed,
purely based on an analysis of these input signals.

4. DISTRIBUTED SIGNAL ESTIMATION WITH
SINGLE-CHANNEL BROADCASTS

4.1 Problem statement and notation
In this section, we aim to compute (5) in a distributed fashion.
In particular, we aim to have the LCMV output signal d̂ =
ŵHy available at each node in the network, without letting

3It is noted that we do not aim to demix the S source signals in x.
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each node broadcast the full signal yk, ∀ k ∈ K. Instead, we
only allow each node to broadcast a single-channel signal.

The single-channel signal that is broadcast by node k is
defined as zk = rH

k yk where rk is a (for the time being)
undefined compression vector. All the zk’s are stacked in the
K-channel signal z and we define z−k as the vector z with zk

removed. Assuming full connectivity, node k has access to
yk and z−k, yielding an (Mk +K − 1)-channel input signal
for node k (see Fig. 1):

ỹk =
[

yk

z−k

]
. (6)

The x̃k and ñk are constructed similarly, and the correspond-
ing correlation matrices are denoted as R̃xx,k and R̃nn,k

respectively. Furthermore, a basis for the corresponding
(compressed) steering subspace is given by the columns of
Q̃k = ÃkTk with Ãk the compressed steering matrix such
that x̃k = Ãks and where Tk denotes a non-singular S × S
matrix. The matrix Q̃k can be estimated, e.g., from the S
dominant eigenvectors of R̃xx,k, as explained earlier.

We define d =
∑

k∈K zk. If ŵ as defined in (5) would
be known, then the signal d can be set equal to the network-
wide LCMV output d̂ = ŵHy by setting rk = ŵk, where
ŵk is the part of ŵ that is applied to yk. However, since
none of the nodes have access to the full signal y, the ma-
trices Rnn and Q cannot be computed and hence (5) cannot
be used to compute ŵ. However the 1Ref-DDSE algorithm
described in Subsection 4.3 will be able to iteratively find
this solution, i.e., the rk’s at the different nodes are sequen-
tially updated to converge towards their corresponding ŵk’s.
Therefore we will add an iteration index i as a superscript
in the sequel, e.g., zi

k = ri H
k yk, etc. It is important to re-

mark that this iterative nature of our approach does not imply
that previous samples of zi

k are recompressed and retrans-
mitted after each update of the ri

k that generates this signal.
This is similar to the output signal of adaptive (recursive) fil-
ters, i.e., previously filtered/compressed/transmitted data is
not refiltered/recompressed/retransmitted when the filter is
updated.

4.2 Relationship with distributed LCMV beamforming
Let us initialize all compression vectors r0

k, ∀ k ∈ K, with
random entries, such that z0

k contains random linear combi-
nations of the microphone signals in yk. Consider the fol-
lowing distributed algorithm that updates the rk’s, which we
refer to as Algorithm A:
1. Initialize q ← 1 and i← 0.
2. Node q observes the (Mq + K − 1)-channel input sig-

nal ỹi
q and computes the LCMV beamformer w̃q with

respect to these inputs (similar to (5), but with R̃i
nn,k and

Q̃i
k, rather than Rnn and Q). It chooses one of its mi-

crophone signals yref
q ∈ yq as the reference microphone

signal. We partition this local LCMV beamformer in two
parts:

w̃q =
[

bq

gq

]
(7)

where bq is the part that is applied to the signal yq , and
gq is the part that is applied to zi

−q .

Rx

Rx

Rx

Tx

Tx

+ LCMV output

Broadcast

Broadcast
rk...

...
...

...

w̃k

zk

gk

gk

bk

...

Node k

d

bk

yk

ỹk

z−k

Figure 1: Illustration of the signal flow within node k in the 1Ref-
DDSE algorithm. Full lines show audio signal flows, and dotted
lines show the exchange of control parameters.

3. Update ri+1
q = bq and ri+1

k = gq(k)ri
k, ∀ k ∈ K\{q},

where gq(k) denotes the entry of gq corresponding to zi
k.

Notice that this update changes all broadcast signals from
zi to zi+1.

4. Update i← i+ 1 and q ← (q mod K) + 1.
5. Go back to step 2.

In each iteration, one node q solves an LCMV beamforming
problem based on its local inputs, and all ri

k’s, ∀ k ∈ K,
are updated based on this LCMV solution (the ri

k’s at nodes
k 6= q are only scaled with some factor chosen by node q).
To perform this scaling, node q must broadcast the vector gq

to the other nodes. However, this is merely a transmission of
control parameters that happens every now and then, which
is negligible compared to the continuous transmission of the
signals in zi.

It is important to note that, after step 3, the speech com-
ponent in the signal di+1 =

∑
k∈K z

i+1
k will be equal to xref

q ,
i.e., the speech component in the reference microphone of
node q. This is because di+1 = w̃H

q ỹi
q , and w̃q is the LCMV

beamformer based on reference microphone signal yref
q . No-

tice that in Algorithm A, each node uses its own local refer-
ence microphone to define its local LCMV problem, which
will hinder convergence to a common solution. In the 1Ref-
DDSE algorithm however, a single reference microphone for
all the nodes is chosen, i.e., y11 (w.l.o.g.), and yet we wish to
avoid that node 1 needs to broadcast this signal (in addition
to zi

1) to the other nodes. Before explaining how this can be
achieved, we first state the following convergence theorem
concerning algorithm A in a hypothetical scenario:

Theorem 4.1. If the reference microphone signal of each
node has the same desired signal component as the network-
wide reference microphone signal y11, i.e.,

yref
k = x11 + nref

k , ∀ k ∈ K . (8)

and if some technical conditions are satisfied (details omit-
ted), then the rk’s of algorithm A converge to the correspond-
ing ŵk’s. This means that limi→∞ di = d̂ = ŵHy, hence
the network-wide LCMV beamformer output d̂ can be com-
puted at each node.

The ‘technical conditions’ mentioned in the theorem are
due to a similarity between algorithm A and the so-called
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distributed LCMV (D-LCMV) algorithm described in [13],
which requires two sufficient conditions to guarantee con-
vergence. Basically, they require that Rnn is full rank, and
that Ri HQ has at least S linearly independent rows for all
i, where Ri denotes the block-diagonal compression ma-
trix Ri = Blockdiag(ri

1, . . . , r
i
K) (such that zi = Ri Hy).

In practice, this second condition is usually satisfied if the
number of nodes K is much larger than S (a safe choice is
K > 2S [13]).

Due to space constraints, we only give an outline of the
proof of Theorem 4.1. Denote ri as the stacked vector of all
the ri

k’s. With this notation, it can be shown that Algorithm
A is equivalent to computing ri+1 from ri as the solution of

ri+1 = arg min
r

rHRnnr (9)

s.t. TiQHr = TiQHe1 (10)

∀ k ∈ K\{q}, ∃ γk ∈ C : rk = ri
kγk . (11)

where q is sequentially updated according to q ← (q
mod K)+1. Here, Ti is a nonsingular S×S transformation
matrix that models the fact that in Algorithm A, each node’s
local (compressed) subspace estimation corresponds to a dif-
ferent4 basis for the (uncompressed) steering subspace. Note
that, due to (8), the first row in the matrix Q and the rows
corresponding to the different yref

k ’s have the same entries,
and therefore it is allowed to use the same selection vector
e1 in every iteration.

Note that removing the Ti’s in (10), ∀ i ∈ N, does not
change the solution of this optimization problem. The re-
sulting updating procedure without the Ti’s has fixed linear
constraints (independent of i), and is then equivalent to the
so-called D-LCMV algorithm, for which convergence to the
network-wide LCMV solution (under the above mentioned
technical conditions5) is proven in [13].

4.3 The 1Ref-DDSE algorithm
We will now convert Algorithm A to a practical algorithm,
such that (8) is not required, while still relying on the con-
vergence result described in Theorem 4.1. Notice that the
first updating node in Algorithm A is node 1. This means
that, for i = 1, it holds that

di =
∑
k∈K

zi
k = x11 +

∑
k∈K

ri H
k nk (12)

i.e., the summation of the zi
k signals yields a signal di that has

exactly the same desired signal component as the reference
microphone y11. Furthermore, since each node has access to
all the zi

k’s, each node can generate di. The main trick to
derive the 1Ref-DDSE algorithm, is to use this signal di as
the reference microphone signal in all nodes (except for node
1, where the actual reference microphone signal y11 is used,
see also Remark I). Define the vector

vi
k =

[
ri

k
1K−1

]
(13)

4This is due to the fact that each node estimates this basis based on a
differently compressed version of Rxx.

5The D-LCMV algorithm can be modified to operate in simply con-
nected networks, in which case the conditions for convergence are slightly
different (see [13] for more details).

Table 1: Description of the 1Ref-DDSE algorithm.

1Ref-DDSE algorithm

1. Initialize r0
k, ∀k ∈ K, with random non-zero entries

and set q ← 1, i← 0.
2. Node q observes the (Mq + K − 1)-channel input

signal ỹi
q (yielding a new estimate of R̃i

nn,q and
Q̃i

q) and it computes the local LCMV beamformer
w̃q according to (16). If q = 1, the same formula
(16) is used, but vi

k is replaced with e1. We define
the partition w̃q =

[
bT

q gT
q

]T
, similar to (7).

3. Update ri+1
q = bq and ri+1

k = gq(k)ri
k, ∀ k ∈

K\{q}, where gq(k) denotes the entry of gq corre-
sponding to zi

k.
4. Update i← i+ 1 and q ← (q mod K) + 1.
5. Go back to step 2.

where 1X is the X-dimensional vector containing 1 in each
entry. Consider the following optimization problem corre-
sponding to node k at iteration i

min
w

wHR̃i
nn,kw (14)

s.t. Q̃i H
k w = Q̃i H

k vi
k (15)

with solution

w̃k =
(
R̃i

nn,k

)−1

Q̃i
k

(
Q̃i H

k

(
R̃i

nn,k

)−1

Q̃i
k

)−1

Q̃i H
k vi

k .

(16)
Since the desired signal component in di is equal to vi H

k x̃i
k,

it can be seen from the righthand side of (15) that the sig-
nal di is actually chosen as a (virtual) reference microphone
signal, rather than one of the actual input signals in ỹi

k.
Let us now consider Algorithm A, where w̃k is computed

as in (16) (except in node 1), which results in the 1Ref-DDSE
algorithm, which is described in Table 1 and the correspond-
ing signal flow at node k is schematically depicted in Fig. 1.
It is important to note that, since each node (except for node
1) uses di as a (virtual) reference microphone signal to com-
pute a distortionless LCMV beamformer, and since di+1 is
equal to the output of this beamformer, (12) will hold for any
iteration i ∈ N. Therefore, the desired signal component of
the signal di will always be equal to x11. Furthermore, this
also means that condition (8) in Theorem 4.1 is now satisfied
for each iteration and in every node, since di (or y11 in node
1) is used as a reference microphone. Therefore, convergence
and optimality of the 1Ref-DDSE algorithm follows imme-
diately from Theorem 4.1.

Remark I: As explained above, the desired signal compo-
nent of the signal di will always be equal to x11. In practice,
however, estimation errors in R̃i

nn,k and Q̃i
k will add some

distortion on this speech component, which ripples through
all subsequent iterations. That is why it is important that
node 1 uses its own reference microphone (rather than di) to
stop this ripple, allowing the algorithm to correct itself.

Remark II: The entries of gq in step 3 of the 1Ref-DDSE
algorithm can also be used by all the nodes to scale the cor-
responding rows and columns in the estimates of their lo-
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cal covariance matrices (i.e., the R̃i
nn,k’s, and possibly the

R̃i
xx,k’s). This may be useful since these covariance matri-

ces need to be continuously tracked.
Remark III: It is noted that the 1Ref-DDSE algorithm

has a complexity of O
(
(Mk +K − 1)3

)
at node k. There-

fore, if M � K, the power consumption in the 1Ref-DDSE
algorithm is significantly smaller than in a centralized LCMV
beamformer, which has complexity O(M3).

5. SIMULATION RESULTS

In this section, we provide simulation results for the 1Ref-
DDSE algorithm in a scenario with two desired speakers
and two babble noise sources, and some uncorrelated sen-
sor noise. We have 5 nodes, each with 4 microphones, in a
5m by 5m reverberant room. Full details and an illustration
of the simulated scenario are omitted here for brevity, but can
be found in [7], which describes the same scenario6. We aim
to estimate the mixture of the two desired speaker signals as
they impinge on the reference microphone (at node 1). This
reference microphone is in the middle of the room, hence
none of the observed speech signals heavily dominates the
other, which is important for the subspace estimation. The
SNR at this reference microphone is -0.8dB. For the sub-
space estimation at node k, we used the locally observed
clean speech correlation matrix (based on the speech com-
ponents in ỹk), hence isolating subspace estimation errors.
We use an STFT with block size 1024.

The performance of the 1Ref-DDSE algorithm is shown
in Fig. 2, and the performance of the corresponding central-
ized LCMV beamformer is also shown as a reference. The
upper plot shows the output SNR as a function of the num-
ber of iterations. It is observed that the 1Ref-DDSE algo-
rithm converges and achieves the same output SNR as the
centralized approach. The middle plot shows the signal-to-
distortion ratio (SDR) defined as

SDRi = 10 log10

E{x11[t]2}
E{(x11[t]− di

k[t])2}
(17)

where x11[t] and di
k[t] are now defined in the time domain.

In theory, the SDR should be infinitely large in each itera-
tion because we envisage a distortionless estimate. This is of
course not the case in practice due to estimation errors in the
correlation matrices and due to finite length DFTs. However,
a very high SDR is indeed immediately obtained in the first
iteration. The SDR slightly drops each time a node k 6= 1
updates. This is because each iteration will introduce some
small distortion on the desired signal component in the beam-
former output di for the same reasons as mentioned earlier.
Since the next update uses the previous di as a reference,
there is a slight ripple of distortion errors over multiple it-
erations, until node 1 updates again (which does not use di

as a reference). The third plot shows the mean squared error
(MSE) between the centralized LCMV filters in ŵ and the
corresponding filter entries in ri = [ri T

1 . . . ri T
K ]T obtained

by the 1Ref-DDSE algorithm.

6. CONCLUSIONS

We have proposed a novel distributed noise reduction algo-
rithm, referred to as the 1Ref-DDSE algorithm, for distor-

6Except for an extra node placed in the middle of the room.
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Figure 2: Performance of the 1Ref-DDSE algorithm, compared
with the centralized LCMV beamformer.

tionless signal estimation in WASNs. Even though nodes
broadcast only single-channel signals, it is proven that the
1Ref-DDSE algorithm obtains the optimal (centralized) per-
formance as if all nodes have access to all microphone sig-
nals. This also holds in scenarios with multiple desired
sources, which is not the case for other existing methods,
where multi-channel broadcasts are required to obtain opti-
mal performance in such scenarios. This is due to the fact
that the 1Ref-DDSE algorithm is based on a single (virtual)
reference microphone that is the same for all the nodes, re-
ducing the desired signal subspace dimension to one. Simu-
lation results have been provided to demonstrate the perfor-
mance of the algorithm.
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