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ABSTRACT

In this paper, an algorithm to decompose Head-Related im-
pulse response(HRIR) into the convolution of two factor re-
sponses is presented. By this Common Factor Decomposition
(CFD) algorithm a group of HRIRs can share a common fac-
tor(CF) response while differ only in the other factor response
which carries all directional information. The directional fac-
tor(DF) response is modeled as infinite impulse response (I-
IR) filter in order to reduce storage. The CF is further repre-
sented as IIR filter using Balanced Model Truncation(BMT)
algorithm to reduce the computation complexity. The pro-
posed method is shown to be computation and storage effi-
cient for virtual 3D sound synthesis.

Index Terms— HRIR, CFD, IIR, BMT, 3D sound

1. INTRODUCTION

Virtual 3D sound synthesis has been a hot research topic in
the past two decades due to the expanding application in sur-
round system, games, home theaters and human aid system.
Head-Related Impulse Response (HRIR), which captures the
filtering effect of human torso, head and pinna to a sound
propagating from a specific spatial position to the eardrum
of a listener, is the core part in virtual 3D sound synthesis[1].
However, measured HRIR is usually a large dataset. For ex-
ample, the HRIR database measured by CIPIC has 1250 pairs
of HRIR and each HRIR has 200 samples[2]. Nevertheless,
this dataset still covers only a finite set of positions. Synthesis
of spatial sound not in this set of positions requires interpo-
lation to get unmeasured HRIR first and then convolution to
synthesis the spatial sound. This is both storage-consuming
and computation-demanding.

As most of the filtering effect caused by reflection and
diffraction of torso and head is similar for sound originated
from different spatial positions, there is a lot of redundancy
in HRIR dataset. Figure 1 shows three HRIRs in left,front
and up directions(the differences in time delay are removed),
which are very similar. In such case, by representing HRIR as
the convolution of a common factor (CF) and a shorter direc-
tional factor (DF) the storage can be reduced remarkably. In
[3] an algorithm based on deconvolution have been proposed

for this purpose with both CF and DF being finite impulse
response (FIR) filter. To further reduce the storage, this algo-
rithm is modified such that DF is derived from the response
of an efficient IIR filter.
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Fig. 1. HRIR of 3 directions

BMT has also been used to reduce the storage and com-
putation in 3D sound synthesis by representing the high order
FIR HRIR with more efficient IIR filter[4]. However, problem
arises in interpolation if BMT is applied to each HRIR indi-
vidually. Besides, a comparably high order is required to have
an acceptable model distortion and thus the storage require-
ment is still comparably high. In this paper BMT is applied to
the CF after CFD analysis and thus avoid the problem of IIR
filter interpolation.

The remaining part of this paper is organized as follows:
section 2 outlines the CFD algorithm and in section 3 an al-
gorithm of CFD is derived to get IIR DF, BMT is combined
with CFD in section 4, the combined algorithm is detailed in
section 5 and its performance evaluated in section 6.

2. COMMON FACTOR DECOMPOSITION

2.1. Factor Decomposition

An impulse response h[n] of length L can be decomposed in-
to two responses, c[n] of length M and another response d[n]
of length N which satisfies L = M + N − 1. The factor-
ization can be done in the following way such that the serial
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connection of the two factor responses c[n]
⊗

d[n] has the
least disparity compared with h[n].

d = C†h (1)

where (•)† denotes pseudo inverse and

h =


h[1]
h[2]
h[3]

...
h[L]

 d =


d[1]
d[2]
d[3]

...
d[N ]

 (2)

C =



c[1] 0
c[2] c[1]
. . . c[2]

. . .

c[M ]
. . . . . . c[1]

c[M ]
. . . c[2]
. . . . . .0 c[M ]


L×N

(3)

After getting d[n], c[n] can be re-optimized in the same
way. By such an iteration two factor responses that can model
h[n] with very low distortion can be found.

2.2. Common Factor Decomposition

Given a set of K impulse responses h1[n], · · · , hK [n] and one
factor response d1[n], · · · , dK [n] for each of them (namely
DF), another factor response c[n] which is common for all
hi[n] (namely CF) can be found in the following way

c =


D1

D2

...
DK


†

×


h1

h2

...
hK

 (4)

here Di is constructed as (3) and c, hi as (2).
After getting the CF c[n], the DF di[n] can further be op-

timized one by one in the way mentioned in section 2.1. By
repeating this optimization procedure the set of impulse re-
sponses can finally be decomposed into the convolution of a
CF and a set of DFs with both of the factors being FIR filters.

3. CFD WITH IIR DIRECTIONAL FACTOR

Although CFD can reduce storage of HRIR dramatically, it
still requires a little more storage than principal component
analysis(PCA) algorithm. To further reduce this storage, CFD
is modified in this section such that DFs are derived as more
efficient IIR filters.

Given a length-L impulse response h[n] and a length-
M FIR factor response c[n], an order-P all-pole IIR filter

1
1+

∑P
i=1 aiz−i can be found so that the serial connection of

the two factors responses can model h[n] well. The response
of this IIR filter d[n] is a function of ai, which is denoted as

d[n] = fn(ai), i = 1, · · · , P, n = 1, 2, · · · ,∞ (5)

Then d[n] is truncated to length N such that M+N = L+
1 and the impulse response of the serially connected system
can be written as ĥ[n] = c[n]

⊗
d[n] approximately. The

square error between this impulse response and h[n] is

ξ =
L∑

i=1

ξi =
L∑

i=1

(h[i]− ĥ[i])2 (6)

To use Newton iteration to minimize ξ, the derivative of ξ
over ak should be calculated

∂ξ

∂ak
=

L∑
i=1

∂ξi
∂ak

=
L∑

i=1

[−2(h[i]− ĥ[i])
∂ĥ[i]

∂ak
] (7)

as

∂ĥ

∂ak
≡


∂ĥ[1]
∂ak

∂ĥ[2]
∂ak

...
∂ĥ[L]
∂ak

 =
∂Cd
∂ak

= C
∂d
∂ak

≡ C


∂f1
∂ak
∂f2
∂ak

...
∂fN
∂ak

 (8)

here C and d is constructed as (3) and (2), respectively. So

∂ĥ[n]

∂ak
= c[n]

⊗ ∂d[n]

∂ak
(9)

where ∂d[n]
∂ak

for all n and k is calculated using (10)

∂d[n]

∂ak
=

P∑
i=1

ai
∂d[n− i]

∂ak
+ d[n− k] (10)

∂d[n]

∂ak
=

∂d[n− I]

∂ak−I
I = 1, · · · , k − 1 (11)

formula (11) helps to reduce this computation by simplifying
the calculation of ∂d[n]

∂ak
for k ≥ 2. It is proved in Appendix.

After all the optimum IIR DFs are found, their impulse
responses are calculated and truncated to FIR filters. Then
the CF is optimized again using the method in section 2.2.

4. COMBINE CFD WITH BMT ANALYSIS

Although CFD can reduce the storage of HRIR dramatical-
ly, the computation complexity in the synthesis stage remains
unchanged. In this paper, BMT analysis which can model a
high order FIR filter with a low order pole-zero IIR filter, is
applied to the CF to reduce the computation complexity.
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4.1. Balanced Model Truncation

The detail of BMT can be found in [5] and only a principal
idea is given here. A system can be represented in state-space
model:

y[n] = C · s[n] (12)
s[n+ 1] = A · s[n] +B · x[n] (13)

here, x[n] is the system input, y[n] is the system output. This
system is fully determined by matrix triplet (A,B,C) has
transfer function

f(z) = C(z · I −A)−1B (14)

where I is unit matrix.
By a transform T that doesn’t change its transfer function

Â = T−1AT−1 B̂ = T−1B Ĉ = CT−1 (15)

we can change the original system into a balanced system in
which the state that contributes little to the output of the sys-
tem also requires a large input to drive it from zero. Such
states can be removed without greatly affecting the output of
the system and the order of the system is thus reduced.

4.2. Combining CFD with BMT

Figure 2 shows the synthesis structure after CFD analysis,
where φ and θ are azimuth and elevation angles respectively.
This approach requires as much computation as using mea-
sure HRIR directly.

input→ c[n]→ dφ,θ[n]→output

Fig. 2. Synthesis Structure of CFD model

It is propose that the high order FIR CF is modeled with
a low order IIR filter by BMT analysis to reduce the compu-
tation complexity. The new synthesis structure is shown in
Figure 3.

input→ A[n]
1+B[n]→ dφ,θ[n]→output

Fig. 3. Synthesis Structure of CFD+BMT Model

BMT modeling will inevitably deviate the CF from the
optimum one. To reduce the distortion brought along by BMT
modeling to the lowest level, an optimization procedure is
performed after BMT modeling: the zero part of the pole-
zero IIR filter A[n] is convolved together with the DF first
and apply CFD again to recompute A[n] and all DFs.

5. COMBINED ALGORITHM

The algorithm for CFD with IIR DF is a two level iteration:
Newton iteration is the inner loop to optimize the IIR coeffi-
cients of the DF and the outer loop is to optimize the FIR CF.
The initial value of CF is derived from the truncation of the
first PCA components of the given HRIR dataset.

Initialize the CF and Calculate FIR DFs using (1)
Model DF with IIR filter using LPC
repeat (outer loop)

for each HRIR h[n]
repeat (inner loop)

Obtain ∂ξ
∂ak

from (7,9)
Update ak ← ak + step× ∂ξ

∂ak

Check stability and truncation error of 1
1−

∑
akz−k

if unstable or large truncation error
Restore previous ak
Exit inner loop

endif
until Convergence
Truncate the response of 1

1−
∑

akz−k to FIR filter
endfor
Optimize CF using (4)

until Convergency
Represent CF with IIR filter A[n]

1+B[n]

Convolve A[n] with dφ,θ[n]
Recompute A[n] and all DFs again using (4,7,9)

When DF is derived as IIR filter in CFD, the problem
of DF interpolation emerges. However, this problem can be
avoided by interpolating on the filter output rather than on the
filter coefficients. In this way, if a 3D sound is to be generat-
ed at an unmeasured position, the output at the four neighbor
positions are calculated and then interpolated. As the impulse
responses of these positions share a CF and differ only by a
low order IIR filter, the increase in computation to calculate
all the output of the neighbor positions is small.

6. EXPERIMENT AND RESULT

The Subject 3 HRIR in the publicly available HRIR database
measured by CIPIC is used as source data in this work.
There are 1250 pairs of HRIRs measured at a regular position
grid containing 50 elevation and 25 azimuth angles for each
subject[2]. Before CFD analysis, all the 2500 HRIRs are
aligned using covariance analysis to remove the differences
in time delay. Then a minimum-phase version is constructed
so that BMT algorithm can perform better[5]. Such version
of HRIR is believed to be perceptually indistinguishable with
original version[6]. To exploit the most redundancy, HRIR is
divided into groups according to azimuth angle as in[7] and a
CF is extracted for each group.
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In CFD with FIR DF (CFD1) analysis, an order-195 FIR
CF is extracted for each group and an order-6 FIR DF for each
HRIR. While in CFD with IIR DF(CFD2) analysis, an order-
150 FIR CF is extracted for each group and an order-4 IIR DF
for each HRIR. In CFD2 iteration the impulse response of IIR
DF is truncated to length 51. After CFD analysis, the CF is
modeled by an order-10 IIR filter using BMT.

The performance of this model is evaluated by Spectrum
Distortion score(SD) in spectrum domain and waveform Fit
score in time domain. The definitions for them are:

SD =

√√√√ 1

N

N∑
i=1

(20 log10
|Hi|
|Ĥi|

)2[dB]

Fit = (1−
∑N

i=1 e[n]
2∑N

i=1 x[n]
2
)× 100%

where e[n] = x[n]− x̂[n]

Two other implementation schemes are also introduced
here: in [4] BMT is applied to each HRIR directly and in [7]
BMT is combined with PCA to solve the problem in IIR filter
interpolation. In this paper, an order-4 IIR filter is extracted
for each HRIR in BMT implementation scheme. The interpo-
lation problem in this scheme is also avoided by interpolating
on the filter output. In PCA+BMT scheme 4 principal com-
ponents are extracted for each group and each components is
modeled with an order-12 IIR filter. Their distortion togeth-
er with storage requirement and computation complexity are
shown in Table 1, in which the computation refer to the syn-
thesis complexity in term of the number of multiplication and
addition needed to output a sound sample.

Fit(%) SD(dB) Storage Computation
BMT 89.6 6.38 8 32

PCA+BMT 90.9 4.86 4 96
CFD1 91.6 4.28 6 200

CFD1+BMT 90.8 4.61 6 26
CFD2+BMT 90.0 4.63 4 40

Table 1. Efficiency Comparison of Five Implementations

PCA+BMT is very efficient in storage. However, it still suf-
fers from comparably high computation complexity. Further-
more, if less distortion is required this complexity will further
increase remarkably(increased by 24 with every increase of
PCA component).

CFD with FIR DF can reduce the computation complexi-
ty dramatically. Besides, little increase in computation com-
plexity is required if we want to improve the distortion per-
formance. For example, when the computation complexity
is increased from 26 to 31 multiplication and addition, the
Fit score can be improved to 94.9% while 6 principal com-
ponents are needed for PCA+BMT scheme to get the same

model accuracy performance, which requires 144 multiplica-
tion and addition. However, this scheme suffers from slightly
increased storage requirement.

When DF in CFD analysis is extracted as IIR filter, the
storage is reduced due to the highly efficient IIR representa-
tion. Although the computation complexity is increased be-
cause we have to calculate all the output of four neighbor po-
sitions, it’s still much small than PCA+BMT.

Besides, we can see that combining BMT to CFD only
causes slight degradation in model accuracy while the com-
putation complexity is reduced dramatically. This is due to
the re-optimization step after BMT analysis which is aimed
to bring down the distortion caused by BMT modeling.

7. CONCLUSION

In this paper, an algorithm based on CFD and BMT is pro-
posed to synthesis virtual 3D sound which is more computa-
tion efficient as compared with PCA+BMT algorithm. By us-
ing IIR DF in CFD analysis, this algorithm performs as good
as PCA+BMT in reducing storage requirement while requires
much less computation complexity.

8. REFERENCES

[1] J. Blauert, Spatial Hearing, 1983.

[2] V.R. Algazi, R.O. Duda, D.M. Thompson, and C. Aven-
dano, “The cipic hrtf database,” in Applications of Signal
Processing to Audio and Acoustics, 2001 IEEE Workshop
on the, 2001, pp. 99 –102.

[3] Claire Masterson, Stephen Adams, Gavin Kearney, and
Frank Bol, “A method for head related impulse response
simplification.,” 17th European Signal Processing Con-
ference (EUSIPCO), pp. 2569–2573, 2009.

[4] J. Mackenzie, J. Huopaniemi, V. Valimaki, and I. Kale,
“Low-order modeling of head-related transfer function-
s using balanced model truncation,” Signal Processing
Letters, IEEE, vol. 4, no. 2, pp. 39 –41, feb 1997.

[5] B. Beliczynski, I. Kale, and G.D. Cain, “Approximation
of fir by iir digital filters: an algorithm based on balanced
model reduction,” Signal Processing, IEEE Transactions
on, vol. 40, no. 3, mar 1992.

[6] N A Schellart and J C De Munck, “A model of head-
related transfer functions based on principal components
analysis and minimum-phase reconstruction.,” Journal
of the Acoustical Society of America, vol. 91, no. 3, pp.
1637–1647, 1987.

[7] Zhixin Wang and Cheung-Fat Chan, “Efficient imple-
mentation of virtual 3d sound synthesis based on combin-
ing grouped pca and bmt,” in Acoustics, Speech and Sig-

243



nal Processing (ICASSP), 2011 IEEE International Con-
ference on, may 2011, pp. 449 –452.

9. APPENDIX

∂d[n]

∂ak
=

∂d[n− I]

∂ak−I
k = 2, · · · ,K I = 1, · · · , k−1

Proof
This equation can be proved by mathematical induction.

It is obvious that

d[n] = 0 n < 0

so

∂d[n]

∂ak
= 0 =

∂d[n− 1]

∂ak−1
n < 0, k = 2, · · · ,K

Suppose the equation holds for n < N ,then

∂d[N ]

∂ak
=

∂(δ[n] +
∑K

i=1 aid[N − i])

∂ak

=

K∑
i=1

ai
∂d[N − i]

∂ak
+ d[N − k]

=
K∑
i=1

ai
∂d[N − i− 1]

∂ak−1
+ d[N − k]

=
∂d[N − 1]

∂ak−1

By simple induction the above equation can be obtained.
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