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ABSTRACT

A system for the acoustic monitoring of relevant audio events
in real-life outdoor recording environments is presented. Tar-
geting such realistic scenarios relies on the usage of robust
and effective audio signal processing methods. In this paper,
we address the key aspects of a corresponding audio monitor-
ing system comprising an array of innovative acoustic sensors
providing bearing information, robust, unsupervised methods
for both detecting and localizing audio events, the integration
of the acquired data streams, and a novel user interface for the
audio-visual browsing of recorded audio scenes and detected
audio events therein.

Index Terms— Audio monitoring system, acoustic event
detection, acoustic localization, acoustic sensors.

1. INTRODUCTION

Heterogeneous sensor networks play an increasingly impor-
tant role for surveillance and protection of critical infrastruc-
tures, major events, etc. In such monitoring scenarios, acous-
tic sensors yield important information on out-of-sight events
or under conditions of bad visibility. A system for audio
summarization typically has to report relevant acoustic events
such as sounds produced by humans, vehicles, machines, or
animals. Furthermore, the detection of conspicious events
such as suddenly occuring, anomalous, noises or repeated
sounds is of interest.

Acoustic event detection in realistic monitoring scenarios,
generally outdoor recordings with uncontrolled noise condi-
tions, results in particular challenges. Usually, such record-
ings are a mixture of different sound sources and are affected
by heavy background noises that change over time. Using
traditional methods for speech and audio processing, such as
voice activity detection (VAD) and keyword spotting, in audio
monitoring scenarios is problematic. One main reason is that
those methods are usually developed for clean audio record-
ings and then adapted to particular types of distortion such as
car-, babble-, or GSM-induced noise. Furthermore, those ap-
proaches usually require extensive amounts of training data to
adapt integrated statistical classifiers to the properties of the
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noise environment or the expected speech. In monitoring sce-
narios, such an extensive training is not possible in most cases
as noises are rarely predictable and individual speakers are a
priori unknown.

In this paper, we address how acoustic event detection in
realistic scenarios can be performed despite of the latter lim-
itations. We first make some crucial observations: in con-
trast to classical speech processing approaches such as VAD,
many audio monitoring applications do not require a precise
temporal localization but only a rough estimate of the period
of audio activity. In contrast to automatic speech recogni-
tion or keyword spotting, no exact transcription of speech
components may be necessary, but only the identification of
speech fragments contained in the recording with some prob-
ability. We therefore propose to model the aspect of rough-
ness directly in the feature extraction process. By additionally
adapting suitable technology from audio retrieval, we obtain
a set of detection and matching techniques. Those allow for
roughly detecting speech activity and spotting sequences of
words which is sufficient for many monitoring scenarios. A
method for extracting repeated acoustic events turns out to be
particularly powerful in the monitoring context. To overcome
the lack of training data, the proposed techniques work largely
unsupervised and require only a limited amount of adaptation
to environmental conditions. On the sensor side, an innova-
tive type of acoustic sensor [1] is employed that allows us to
incorporate localization information, hence further improv-
ing the accuracy of acoustical monitoring. To create a holis-
tic system for audio summarization in monitoring scenarios,
we propose a graphical audio event browser which allows for
audio-visual navigation and playback of the recorded audio
streams and detected audio events therein.

Several approaches of multimodal signal fusion for au-
dio classification and localization have been proposed in re-
cent years which, however, were mostly designed or tested
for audio scenes with low or uniform noise levels. In [2], fu-
sion of multimodal signals using canonical correlation analy-
sis (CCA), and copula theory to detect the presence of a hu-
man using footstep signals from seismic and acoustic sensors,
is presented. The proposed method is general and can be ex-
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tended to data obtained from other sensing modalities. Butko
et al. [3] present a multimodal monitoring system for meeting
room scenarios based on a feature-level fusion approach to
improve the recognition rate of acoustic event detection using
information from auditive and visual modalities. In [4], dif-
ferent types of classification and localization techniques for
handling different indoor acoustic events in well-controlled
office environments are evaluated. A sensor network-based
acoustic source localization strategy is described which can
cope a wide variety of sounds.

Our paper is organized as follows. Starting with the
design of general audio features, Sect. 2 describes how to
transfer methods for unsupervised audio retrieval to the audio
monitoring context. In Sect. 3, aspects of the overall mon-
itoring system are presented, covering the acoustic sensors,
localization, data processing issues, and the novel multimodal
user interface. Sect. 4 briefly describes the findings of a first
case study for an outdoor monitoring scenario.

2. ROBUST AUDIO MONITORING: METHODS

2.1. Feature Extraction

As a starting point to construct robust features, we follow
an approach by Skowronski et al. [5] to generalize the well-
known MFCC (Mel-Frequency Cepstral Coefficients) fea-
tures by introducing an additional degree of freedom in the
underlying filter bank. Whereas the filters of the classical
MFCC-filterbank have bandwidths determined by the center
frequencies of the adjacent bands, they propose to choose
the bandwidth of the mel-spaced filters according to the
bark scale of human perception [5]. The resulting features,
called HFCCs (Human Factor Cepstral Coefficients), appear
to better represent the phoneme progression in human speech
independently of the speaker than MFCCs do. Subsequently,
HFCC-ENS features derived from HFCCs were successfully
employed to the unsupervised detection of short sequences of
words in a given signal of recorded speech [6]. That approach
extends HFCCs by computing short time energy normalized
statistics (ENS), hence adapting the feature resolution from a
standard of 100 Hz (or a step size of 20 ms) to a coarser reso-
lution which is better suited to represent the typical phoneme
resolution.

To allow adaptation of the audio features to the particu-
lar demands of our monitoring scenario, we propose to gen-
eralize this feature extraction process even more: In the lat-
ter, frontend (frame-based spectral analysis) and backend pro-
cessing (decorrelating DCT) coincide with the well-known
MEFCC feature extraction. The mel-filterbank is however re-
placed by a general filterbank (FB) which is specified by (i)
the total frequency range, (ii) the number of filters in this
range, (iii) the spacing of the center frequencies, and (iv) the
bandwidths of the filters. For MFCCs, a common choice are
(1) a frequency range of 6500 Hz with (ii) 40 filters which are
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Fig. 1. Energy envelopes (top down): unfiltered, lowpass,
highpass, combined high- and lowpass filtering.

(iii) spaced according to the mel-scale, where (iv) the band-
width of the ¢-th filter extends from the center frequency of
filter (i—1) to that of filter (¢+1). The latter frequency param-
eters allow us to control the spectral feature resolution. In the
subsequent ENS-process, we first perform an energy normal-
ization followed by a feature-based (component-wise) quan-
tization. The quantization basically generalizes the log-scale
compression performed in the MFCC feature extraction. Nor-
malization and quantization gives us a set of amplitude or en-
ergy parameters. Afterwards, smoothing and downsampling
of the resulting feature sequence allows us to adapt the tempo-
ral resolution of the features by choosing both the smoothing
window size (in ms) and the target feature resolution (in Hz)
as temporal parameters. The general features produced after
the final DCT step are called FBCC-ENS.

2.2. Voice Activity Detection

For the proposed VAD application, FBCC-ENS with 220 fil-
ters in the range of 1-10 kHz and a smoothing window of 800
ms were used. The resulting features provide a good repre-
sentation of the local spectral properties of a signal. Formant
regions are clearly visible, discriminating voiced speech from
unvoiced speech and noise.

Because of the severe noise conditions in real acoustic
channels, we suggest to apply additional postprocessing steps
in the feature domain in order to enhance speech components
and attenuate noise-like parts. Those steps consist of (i) high-
pass filtering, (ii) lowpass filtering, (iii) envelope estimation,
and (iv) feature averaging. When the SNR is rather low,
voiced speech regions begin to melt with enclosing noise,
while fricatives such as /s/, /sh/, /ch/, /f/, or /z/ may be lost
completely. As described in Subsect. 2.1, first a noise de-
pendent quantizer tries to overcome this problem. For our
postprocessing, we employ a highpass FIR filter of first order
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Fig. 2. Similarity function A obtained for a particular sce-
nario of keyphrase matching.

as a typical form of a pre-emphasis filter. By applying this
filter directly to the feature subbands, the desired effect of ac-
centuating high frequency sounds such as unvoiced fricatives
is obtained. By an additional subsequent lowpass filtering of
the features using a de-emphasis filter, the influence of low
frequency noise such as vehicular noise is partly rejected.
The resulting energy content of frequency regions is our fi-
nal discriminant parameter used in the VAD decision. For
energy estimation, we proceed by first calculating the Hilbert
envelopes of the filtered FBCC-ENS bands, resulting in a
coarse temporal shape of the 2D feature surface. By finally
taking the mean of all resulting Hilbert envelopes, inter-band
variations are compensated. After median filtering the fi-
nal envelope, remaining energy fluctuations are smoothed
out over time. Fig. 1 illustrates the benefits of the proposed
filtering stages and shows the resulting averaged temporal en-
velope. In the bottom-most graph, the ground truth is marked
by a black line. Finally, VAD is performed by applying a
thresholding procedure to the resulting mean envelope.

2.3. Keyword Spotting

Our basic approach for automatically detecting short se-
quences of words — in this context called phrases — in au-
dio monitoring signals combines the technique of audio
matching, known from domain of music retrieval [7] with
HFCC-ENS features [6]. To this end, both the phrase (given
in form of a short audio signal) and the monitoring sig-
nal are converted to feature sequences ¢ = (q1,-..,qn)
and d = (dy,...,dn), where each of the ¢; respectively
d; are feature vectors. Matching is then performed using a
cross-correlation-like approach, where a similarity function
A(n) == 57 Zé‘il<qg, dp—1+¢) gives the similarity of phrase
and monitoring signal at position n. Using normalized feature
vectors, values of A in a range of [0, 1] can be enforced.

Fig. 2 shows a similarity function A(n) obtained by
an example where the German phrase “Heute ist schones
Friihlingswetter” was matched to a long audio recording
composed of 40 phrases spoken by different speakers. Among
those are four versions of the query phrase, each by a differ-
ent speaker. All of them are identified as matches (indicated
in green) by applying a suitable peak-picking strategy. In
order to be more flexible with respect to the typical nonlinear
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Fig. 3. Self-similarity matrix of a five second recording. El-
ement (A) indicates a repeated cry for help, (B) a three times
knocking, while rectangular regions (C) indicate silence.

variations in speaking tempo, in our monitoring scenario we
replace the above correlation-based approach to calculate a
cost function by a variant of subsequence DTW (dynamic
time warping) [6].

Compared to classical keyword spotting [8, 9], the pro-
posed approach is particularly beneficial when the target
phrase consists of at least 3—4 syllables [6]. Advantages in-
herited from using the proposed HFCC-ENS features for this
task are speaker and also gender independence.

2.4. Detection of Repeated Acoustic Events

To obtain the similarity of a short feature sequence ¢ and
a particular position of a longer sequence d, the similarity
function A averages M local comparisons (g;, d;) of feature
vectors g; and d;. In general, the similarity between two fea-
ture sequences a := (a1,...,ax) and b := (by,...,by) can
be characterized by calculating a similarity matrix Sqp, =
({as,bj))1<i<r1<j<r consisting of all pair-wise compar-
isons. To analyze the structure of an audio signal, the self-
similarity matrix S, := Sq,q of the corresponding feature se-
quence a can be employed [10]. Fig. 3 shows a self-similarity
matrix for an outdoor monitoring recording of five seconds
duration. Color coding is chosen in a way such that dark
red regions indicate high local similarity and blue regions
correspond to low local similarity. Diagonal-like trajecto-
ries indicate the presence of repeated audio events within
the analyzed signal. In Fig. 3, the diagonal-like elements
correspond to (A) a repeated human exclamation and (B) a
repeated knocking on some metal plate. Rectangular regions
(C) usually indicate silence. In our monitoring context, we
compute a list of all repeated events following the heuristic
approach proposed in [10].
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3. AN AUDIO MONITORING SYSTEM

To solve the considered acoustic localization problem, an ar-
ray of three ground-located acoustic vector sensors (AVS) is
used that simultaneously acquires time difference of arrival
(TDOA)- as well as bearing measurements. Each AVS jointly
measures the acoustic sound pressure and the acoustic par-
ticle velocity [1]. Acoustic localization can be realized by
traditional triangulation, TDOA localization, or a combina-
tion of both. For triangulation, we may directly exploit the
bearing measurements provided by the AVS. The intersec-
tion of the bearing lines determines the desired source lo-
cation. TDOA measurements can be obtained by using two
time-synchronized acoustic sensors. A single TDOA mea-
surement can be geometrically interpreted as a hyperbola that
determines the possible source locations. Using at least three
TDOA sensors at dislodged locations, the corresponding hy-
perbolas can be intersected in order to localize the acoustic
sound source. Exploiting time-sychronization of our sensors,
we are able to use a combination of TDOA and triangulation-
based localization.

In a first approach, the overall data processing chain in-
cluding detection, classification, localization, and reporting
of acoutic events is done in a cascaded fashion on multi-
ple levels. Let S 152, and S® denote the three AVS. Each
S* records signals in four channels S%,j € {1:4}, with a
sampling rate of currently 44.1 kHz (and 16 bit). The first
three channels S%,j € {1:3}, are used for both acoustic
classification and bearing of acoustic events. Each channel
captures the air flow of different spatial directions, provid-
ing an azimuth- and elevation angle. The fourth channel S}
essentially provides GPS timestamps, thus allowing for time
synchronization. The first level of data processing operates
on the signals S. Let S} . := {(t,x)} := {(t,K):x} de-
note a set of recognized acoustic events of class c at time ¢
with confidence . Furthermore, let Q' := {(t,w,w!, )}
denote a set of bearing results, where w? and w? refers to
an azimuth- and elevation angle, respectively, measured at
time ¢ with confidence x at S*. Still operating on the data
streams, on the second level all three individual level-1 clas-
sification results Sic, j € {1:3}, are merged into a single
overall classification result S? := {(¢,x)}. On the third
level, all single overall classification results are merged into
the set SIM% = {(t,k)} of compound classification re-
sults. Individual level-1 bearing results are merged into the
set 551’2’3} := {(t, (Piat, Pion ), &)}, denoting crossing bear-
ing, where (piat, Pion) refers to a GPS coordinate. Finally,
the level-3 classification and localization results are merged
into a set S11:23} .= {(t, ¢, ke(Drat, Pion), Kp) } Of detected,
classified, and localized acoustic events.

To present the detection and localization results to the user
in an intuitive and easy-to-browse way, a multimodal user
interface has been developed. Fig. 4 shows an overview of
the main components for user interaction. The system basi-

cally acts as an interactive audio player where selected au-
dio streams recorded by the sensors may be played back. On
the left side, the system displays the signal and spectrogram
of the selected audio channel (top left) and a timetable-like
overview of the detected audio events (bottom left). In this ex-
ample, voice activity, detected keywords (here cries for help
shouted in German), and repeated audio events are displayed.
Repeated instances of the same sounds are displayed in the
same color; in this example the repeated sound of knocking on
a metal plate is shown in black color, repeated exclamations
of the same sequences of words are shown in red, green, blue,
and yellow colors respectively. All of the visualizations are
synchronized, indicated by a sliding cursor that moves during
playback. By clicking on the detected audio events, playback
can be continued from the corresponding temporal position.
Localization information is presented in the right part of the
user interface, showing an areal map of the monitored area,
where the positions of the acoustic sensors are indicated by
red bullets. Detected and localized events are indicated by
small blue crosshairs during playback. By using short inter-
vals of display time, temporal trajectories like detected foot-
steps can be visualized as well. Additionally, small textboxes
indicate labels specifying individual events. The whole user
interface works for real-time playback as well as in an offline-
mode, the latter meaning that detected events can be selected
in the event-list and localization information visualized in the
map without playback being active.

4. A CASE STUDY

In a case study, the proposed system was set up on the grounds
of Fraunhofer FKIE, see Fig. 4 for an areal map including sen-
sor positions. In an experiment, different persons located at
different distances to the sensor network were producing dif-
ferent types of verbal exclamations as well as various types
of knocking sounds. Evaluations show that VAD, keyword
spotting, and detection of repeated sounds work very robustly.
However, the limited sensor range due to filter effects caused
by the windshields will have to be considered next. Event
localization is also possible for strong, isolated events. Sep-
aration and detection of simultaneous events was not possi-
ble in the current setup and will be subject of a subsequent
study. In a second experiment, two persons walking in oppo-
site directions along different surfaces, while talking to each
other, were recorded. While separate experiments under con-
trolled conditions were already performed for calibrating sen-
sor equipment and estimating noise levels, further, more com-
prehensive and formal evaluations have to be performed.

5. CONCLUSIONS AND FUTURE WORK

A main focus of this paper was on devising robust audio fea-
tures and adapting unsupervised audio retrieval techniques to
the scenario of acoustical monitoring. Secondly, a system
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Fig. 4. User Interface of the proposed monitoring system. Selected audio channel along with spectrogram (top left), extracted
audio events (bottom left), and area map showing localization information of detected events (right).

for multimodal presentation and navigation of monitoring re-
sults was presented. First case studies show how the proposed
system benefits from the suitable integration of detection and
localization results obtained from data recorded by an inno-
vative acoustic sensor. Besides more comprehensive evalua-
tions, future work has to deal with mechanisms for more sys-
tematically fusing the outputs of the different detectors. In
this context, another issue will be how to combine results ob-
tained from a larger, spatially distributed sensor network.
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