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ABSTRACT

Depth maps are an integral component of 3D video process-
ing. They have a number of uses, including view synthesis for
multi-view video, human computer interaction, augmented
reality, and 3D scene reconstruction. However, depth maps
are often captured at low quality or low resolution due to sen-
sor hardware limitations or estimation errors. In this paper,
we propose a new method to enhance noisy or low-resolution
depth maps using high-resolution color images. Our method
is based on sample selection and refinement in conjunction
with multi-lateral filtering, a method derived from joint bilat-
eral filtering using a new weighting metric. Our experimental
results verify that the proposed method performs very well in
comparison to existing methods.

Index Terms— Depth map, range camera, depth estima-
tion, depth upsampling, depth superresolution

1. INTRODUCTION

Depth maps are commonly used in many three-dimensional
(3D) applications. For these applications, the depth maps
should be of high geometric quality and resolution since a
minor error may result in distortions. Recent advances have
shown us various types of sensors to obtain depth maps, such
as Time-of-Flight cameras (ToF), real-time infrared projec-
tors and cameras (e.g. Microsoft Kinect), or stereo vision sys-
tems. Unfortunately, most of the time, the quality and resolu-
tion of the acquired depth is not up to par with the analogous
color images obtained from standard cameras.

Due to this limitation, the subject of depth map upsam-
pling/refinement has been extensively studied. As depth sen-
sors have been widely used in the field of computer vision, the
problem of depth upsampling has received ever-increasing at-
tention. A seminal work in the study of the depth map upsam-
pling problem is the work by Diebel et al. [1]. They assumed
that discontinuities in range and color tend to co-align. In
their work, the posterior probability of the high-resolution re-
construction is designed as a Markov Random Field (MRF)
and it is optimized with the Conjugate Gradient (CG) algo-
rithm.
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Following with a similar depth upsampling method, Kopf
et al. proposed Joint Bilateral Upsampling (JBU) [2]. This
approach leverages a modified bilateral filter. They upsample
a low-resolution depth by applying a spatial filter to it, while
jointly applying a similar range filter on the high-resolution
color image. Research in depth map upsampling has recently
experienced significant progress by the initial introduction of
JBU.

Additionally, Yang et al. presented an upsampling method
based on bilateral filtering the cost volume with sub-pixel esti-
mation [3]. They build a cost volume of depth probability and
then iteratively apply a standard bilateral filter to it. The final
output depth map is generated by taking the winner-takes-all
approach on the weighted cost volume. Finally, a sub-pixel
estimation algorithm is applied to reduce discontinuities.

It is worth noting that all of the methods mentioned above
may suffer from artifacts, such as texture copying and edge
blurring. Texture copying occurs in smooth areas with noisy
depth data and textures in the color image, while edge blur-
ring occurs in transition areas if different objects (located in
different depth layers) have similar color.

To overcome these problems, the Noise Aware Filter for
Depth Upsampling (NAFDU) was proposed by Derek et al.
[4]. The method switches between two different filters; a
standard bilateral upsampling filter on smooth regions and a
joint bilateral upsampling filter on transition areas in the depth
map. A blending function is used for a gradual intermixing
between the two filter outputs.

The approach closest to ours, the Pixel Weighted Aver-
age Strategy (PWAS) by Frederic et al., also proposes to re-
solve artifacts [5]. They build multi-lateral upsampling filters,
which are an extended joint bilateral filter with an added cred-
ibility factor. The factor takes into account the low reliability
of depth measurements along depth edges and the inherent
noisy nature of real-time depth data. As a further improve-
ment upon PWAS, Adaptive Multi-lateral Filtering (AMF)
has been proposed to improve accuracy within smooth regions
[6].

These approaches may solve the texture copying and edge
blurring problems, but their performances are unfortunately
very sensitive to the window size of their filter, making the
window size the most critical parameter. If the window size

1124



is too large, it might cause boundary blurring and lose details
of complex objects. If the window size is too small, it may
fail to collect significant information from its neighborhood.

In light of these problems, we present a new depth sam-
pling method and multi-lateral filtering technique. Our ap-
proach is based on selecting reliable depth samples from a
neighborhood of pixels and applying multi-lateral filtering.
We first define unreliable regions by calculating a measure
of reliability for each pixel in the depth map. The reliabil-
ity is determined by calculating the sum of gradients for each
pixel’s neighborhood. Then every pixel in the region of low
reliability collects samples from the region of high reliabil-
ity and selects the best sample with the highest fidelity. Each
pixel’s selected depth sample is refined by sharing its infor-
mation with its neighbors’ selected samples in the sample re-
finement stage. Finally, a robust multi-lateral filter, which
is an extended joint bilateral filtering technique with an ad-
ditional factor for robustness weights, is applied to reduce
noise while preserving sharpness along edges. We evaluate
our approach on the Middlebury datasets [7] and show that
our method provides performance gains over existing meth-
ods. To our knowledge, our work is the first of its kind that
presents a sampling-based depth refinement.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the proposed method. A visual and quantita-
tive comparison of a number of key methods and improve-
ment results are reported in Section 3. Finally, a conclusion
is given in Section 4.

2. PROPOSED METHOD

Errors in range images generated by real-time depth sensors
or stereo vision systems can be roughly categorized into two
broad categories:

e Errors in transition areas: Inadequate calibration, oc-
clusion area, or motion artifacts often lead to wrong
distance values at object boundaries when we fuse the
depth maps with color images.

e Random noise on geometrically flat or smooth surfaces:
Properties of the object surface, lighting conditions, or
systematic errors may generate noise on the surface.

In our work, we investigate a method that is able to fix
both errors. Our method takes a color image I and a depth
map D as inputs. The process consists of sample selection,
sample refinement, and robust multi-lateral filtering. Before
refining the depth map, we first measure depth reliabilities
and define unreliable regions in it. In the sample selection
stage, for every pixel in the unreliable region we collect sam-
ples from reliable regions and select the best sample giving
the highest fidelity. Then the selected depth samples are re-
fined by sharing their information with their neighbors’ se-
lected samples. Finally, a robust multi-lateral filter is applied

Fig. 1. Pixel p shoots several rays (red lines) toward reliable
(white) region and collects the closest samples (blue squares).

to reduce noise in smooth areas, while preserving sharpness
along the edges.

2.1. Unreliable Region Detection

We use the gradient of the depth map as an important key for
measuring reliability of depth values based on our assumption
that depth values with high variance in their neighborhood or
depth values along edges are not reliable. We first take the
derivative on the depth map and calculate its magnitude. Then
for each pixel, we compute an average function of Gaussian
of the gradient magnitude in a small window. Thus, the relia-
bility for each pixel is determined by the following equation.

Ky = > [([VDy])/ 1] (1)

q€Qy

where f; is the Gaussian function with variance o; , §2, is the
window centered at pixel p , and V is the gradient operation.
The unreliable region ® is the set of pixels whose reliability
values are less than a certain threshold.

¢+ {p|K, <7} 2)

The threshold 7 controls the width of the unreliable region.
The remaining pixels in the depth map are identified as the
reliable region. Every depth value in this unreliable region ®
will be refined by the following sample selection and refine-
ment steps.

2.2. Sample Selection

To recover the pixels in the unreliable region, we collect depth
samples from a nearby reliable region, inspired by [8]. In the
alpha matting problem, color samples are extracted from the
reliable regions to estimate the unknown pixels’ alpha values.
Similar to this, we collect depth samples from the reliable
regions to refine the unreliable depth values.

We collect depth samples from a neighborhood by shoot-
ing several rays toward the known region. The slope of each
ray is given by ©, © « {%U =0,1,...,2n — 1}. When the
ray from p meets the known region, the closest depth sample
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is saved to W¥,,. Fig. 1 illustrates rays (red lines) and collected
depth samples (blue squares) for the pixel location p.

The best depth sample for pixel p € @ is obtained by
calculating the fidelity for all collected depth samples W,,.
For every ¢ € W, the fidelity function is computed based on
the criteria that pixels with similar color tend to share similar
depth values and that they are likely to have the same depth
value if they are spatially close. Therefore, at a given pixel p,
we compute the fidelity function as

9> (i) = > frllly = LD fs(la —ill)/|0] 3

q€Qp

where f, and f; are taken to be Gaussian functions with stan-
dard deviations o, and o respectively. The chromatic simi-
larity in the RGB color space is computed by the Euclidean
distance metric. To suppress errors from image noise caused
by low lighting, high ISO settings, or chromatic distortion, we
take into account the average of all pixels in a 3 x 3 window
centered at pixel p.

Eq. (3) will have a large response for the depth value d;
which has a similar color and spatial proximity, but a value
close to zero for the rest. We select the i* giving the largest
fidelity value among depth samples:

i* = arg max g (p, 1) 4)
i€,
Then we save the selected depth and fidelity for each pixel
pe o

SS __
DS% = D,
E5% = g%%(p,i*) Q)

We use the selected disparity map D°° and the fidelity map
ES% in the following sample refinement stage.

2.3. Sample Refinement

Since we collect depth samples with the ray searching
scheme, where several rays spread out like the spokes of
a wheel, the method occasionally fails to collect appropriate
depths in some situations. For example, the desirable depth
sample may be located between the rays or it may happen
that the color affected by noise with a false depth sample is
accidentally very similar to the target’s color. Therefore, an
additional refinement stage is required.

In the sample refinement stage, the samples are refined
by comparing their own choice of best depth sample with the
choices of their neighborhood. The design of the fidelity func-
tion for sample refinement is based on color fitness and spatial
distance between pixel p and its neighbor ¢ as well as ¢’s fi-
delity value from the sample selection stage. The fidelity for
sample refinement is determined by

90, q9) = E;° £ (1L, — LD fs(lp—dl) (6

(a) Color image  (b) Input disparity (c) Proposed method

Fig. 2. Experimental result of our method. The input disparity
map is generated by downsampling ground truth with factor
of 5.

where E7% is the fidelity value of the pixel ¢ from the previ-
ous stage. ¢* is chosen to give the largest fidelity value among
p’s neighborhood:

q* = argmax g°"(p, q) (7)
q€Qp

Similar to the sample selection stage, both refined depth value
and fidelity are saved.

DR = D,
EJR = g% (p,q") (8)

Up to this point, we have estimated new depth values for pix-
els in the unreliable region. In the next step, the refined depth
data will be used as an initial depth estimate and the fidelity
values will be used to determine the robustness factor.

2.4. Robust Multi-lateral Filtering

After the unreliable region is refined by the sample selec-
tion and refinement stages, the depth map still needs to be
processed to reduce discontinuities in the final depth map.
Therefore, we apply a robust multi-lateral filter. It is an ex-
tended joint bilateral filtering technique, but the robustness
factor is added to reduce blurring along edges as well as to
refine edges. The robustness value for pixel p is determined
by choosing the minimum value between K, and E5* be-
cause we want to disregard depth values with low plausibility
as much as we can.
K, = min{K,, E;"} )
With this robustness factor, our final depth is determined
by

> gea, Frllly = LD fs(llp — all) K DFR
2 qeq, fr(llp = L) fs(llp — all) Ky

The spatial weighing term f; is based on pixel position and

the range weight f,. is based on color data. Thus, this filter

adjusts the edges in the input depth map DS to the edges
in the guidance color image I and the robustness factor K

(10)

MF _
D, =
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gives low weight to depth values with low fidelity, preventing
artifacts such as texture copying and edge blurring. Fig. 2
shows the result of our algorithm as will be discussed in the
next section.

3. RESULTS

In this section we discuss the experiments to evaluate the al-
gorithm’s performance. The proposed method has been im-
plemented with GPU programming and tested on computer
with In Intel Corei7 CPU 2.93GHz Processor and an NVIDIA
GeForce GTX 460 graphics card. The performance speed of
our method is on average 26 fps on a video with 640 x 480
resolution.

We provide both qualitative and quantitative comparisons
with other existing methods. Also, we show an improvement
benchmark by applying our refinement method to disparity
estimation results from all of the 109 methods on the Middle-
bury stereo evaluation website.

3.1. Visual and Quantitative Comparison

For a quantitative comparison, we utilize the Moebius, Books,
and Art scenes from the Middlebury datasets. We have eval-
uated the performance of the proposed method against the
state-of-the-art methods presented by [6]. Downsampled dis-
parity maps are generated by downsampling the ground truth
by a factor of 3x, 5x, and 9x. In [6], they used the struc-
tural similarity (SSIM) measure as a quantitative compari-
son. However, this measure is not appropriate for depth map
evaluation because it does not function properly with dispar-
ities in unknown or occluded regions. Middlebury’s ground
truth maps contain regions of unknown disparity and depth
upsampling algorithms do not produce meaningful results in
those regions. As a fair comparison, we calculate the aver-
age percentage of bad pixels with an error threshold of 1 for
all known regions; pixels whose disparity error is greater than
threshold are regarded as the bad pixels. This is the same scor-
ing scheme employed in the Middlebury evaluation. Fig. 3
and Table 1 show that our method performs better than all of
the other methods.

3.2. Improvements

Also, we apply our refinement method to the disparity estima-
tion results of all methods submitted to the Middlebury stereo
evaluation. Fig. 4 shows the improvement in terms of the per-
centage of bad pixels. Note that the proposed method im-
proves the results of most methods. One limitation of the pro-
posed algorithm is that its performance drops with small and
complex images or poorly estimated initial disparity maps.
More experiments and results of our method can be
found at: http://videoprocessing.ucsd.edu/
~ultralkl/projects/SRMF/

Table 1. Quantitative comparisons (average percent of bad

pixels)

Dataset JBU PWAS AMF Proposed

3x 743 4.68 4.5 3.62

Moebius 5x 1222 749 7.37 4.87

9x 21.02 1286 12.75 9.02

3x 54 3.59 3.48 2.38

Books 5x 9.11 6.39 6.28 3.58

9x 15.85 1239 1224 7.11

3x 15.15 7.05 6.79 5.07

Art 5x 2346 10.35 9.86 6.91

9x 3841 1687 16.87 11.7

4. CONCLUSION

In this paper, we have proposed a new depth map enhance-
ment method based on sample selection, refinement, and ro-
bust multi-lateral filtering. Specifically, we have introduced
a new sampling method to get better accuracy on boundaries.
Also we have investigated multi-lateral filtering with a new
robustness factor. Experiments clearly show that the pro-
posed algorithm significantly outperforms other state-of-the-
art methods in the depth upsampling problem.

Our future work will be focused on improving the model
to determine unreliable regions adaptively.
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(a) Color image (b) Ground truth (c)JBU

(d) PWAS (e) UML (f) Proposed method

Fig. 3. Visual comparison on the Middlebury datasets. The upsampling methods include: (c) JBU, (d) PWAS, (e) UML, (f)

proposed method.
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