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ABSTRACT

In dense Wireless Sensor Networks (WSN) consecutive mea-

surements obtained by sensors are spatio-temporally corre-

lated in applications that involve the observation of the vari-

ation of a physical phenomenon. To exploit this spatio-

temporal structure for event detection, the the traditional

GLRT test degenerates in the case where dimensionality of

data is equal to the sample size or larger. It is because

the spatio-temporal sample covariance matrix becomes ill-

conditioned or near singular. To circumvent this problem, we

modify the traditional GLRT detector by splitting the large

spatio-temporal covariance matrix into spatial and temporal

covariance matrices. In addition, several detectors are pro-

posed that are robust in the case of high dimensionality and

small sample size. Numerical results are drawn, which show

that the proposed detection schemes indeed out perform the

traditional approaches when the dimension of data is larger

than the sample size.

Index Terms— Spatio-Temporal Correlation, Kronecker

Structure, GLRT, Wireless Sensor Network.

1. INTRODUCTION

In wireless senor networks (WSNs), dense deployment of

sensor nodes makes the sensor observations highly correlated

in the space domain. In other words, the existence of spatial

correlation implies that the readings from sensor nodes which

are geographically close to each other are expected to be

largely correlated. In environment monitoring applications,

sensor nodes periodically sample and communicate the data

to the fusion center. The nature of the energy-radiating phys-

ical phenomenon yields temporal correlation between each

consecutive observation of a sensor node [1]. Existence of

temporal correlation implies that the readings observed at one

time instant are related to the readings observed at the previ-

ous time instants. To sum it up this means that the physical

phenomena often exhibit both spatial and temporal correla-
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tion. By noticing the fact that sensor readings are both spa-

tially and temporally correlated, the detection of an event can

be performed by capturing the spatio-temporal correlation in

the sensor readings.

While considering large scale WSN, we assume that a sub-

set of sensors (i.e. those located close to the event) receive

the signal emitted by the event and send their measurements

to the fusion center. Intuitively, spatial correlation present in

observations of these sensors indicates that measurements are

received from same neighborhood and it is most likely that

some real event has happend. Similarly, if there is strong cor-

relation between the consecutive time measurements then it

further confirms the actual presence of an event. There have

been some attempts to consider the correlated measurements

into formulation of the signal detection. However, many of

these studies consider the presence of correlation as a delete-

rious effect [2]. On the contrary, there are some contributions

that focus on the discrimination between only spatially cor-

related and spatially independent observations by exploiting

the structure of covariance matrix [3, Ch. 9-10][4]. However,

these works consider observations received as temporally in-

dependent and do not capture spatio-temporal characteristics

of the physical phenomenon.

The GLRT approach in [5] detects spatial correlation in

time series based on the decision whether the spatio-temporal

sample covariance matrix is block diagonal or not. This ap-

proach typically ends up with a simple quotient between the

determinant of the spatio-temporal sample covariance matrix

and the determinant of its diagonal version. As the GLRT

involves estimation of unknown parameters (i.e. covariance

matrix), therefore, it depends on the sample size and the di-

mensionality. In practice, GLRT is used based on the assump-

tion that the sample size is large while the sample dimension

is small. In the case of large WSN when the sample support

available for estimating the covariance matrix is limited, the

GLRT degenerates due to singular and ill-conditioned covari-

ance matrix [6]. To cope with this problem we propose novel

detectors that are robust against the high dimensionality of

spatio-temporal data. Consequently, the proposed detectors

are based on splitting the spatio-temporal covariance matrix
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into spatial and temporal covariance matrices. By doing so

the demand for large sample size reduces as the dimensions

of the resultant spatial and temporal covariance matrices be-

come much smaller than the dimension of full spatio-temporal

covariance matrix.

The remaining paper is organized as follows. In section 2,

problem statement and details of signal models are presented.

In section 3 we present the traditional detectors and section

4 introduces a modification of the traditional GLRT and two

robust ad hoc tests. In section 5 we present simulation results

and section 6 concludes the work.

2. PROBLEM FORMULATION
2.1. Problem statement
We consider an infrastructure based sensor network where a

fusion center receives observations from sensor nodes and it

makes the final decision about the presence of an event in the

field. Furthermore, we assume that the signal emitted by the

presence of the event can be modeled as an electromagnetic

field that can be measured by a radio-frequency receiver. The

region where the physical phenomenon occurs is called event

region. While considering large WSN and limited sensing

range, we assume that the event will be detected by only L
sensors, which are present in the event region (i.e. the re-

gion where signal power is present) and we call them active
sensors. To save power and communication costs, we con-

sider local censoring technique such that only L active sensors

communicate their observations to the fusion center, which is

also to say that only these sensors have locally decided that

the event is present in the field. Herein, we assume that ev-

ery sensor is equipped with a local energy detector to decide

whether to communicate their observations to the fusion cen-

ter or not. After receiving the measurements, the fusion cen-

ter draws the final decision based on the exploitation of both

spatial and temporal correlations present in the received mea-

surements.

2.2. Signal Model
Each active node measures its total received power (in dB),

normalizes the measurements by subtracting the mean noise

power (in dB) and sends the normalized measurement xi (in

dB), i = {1, 2, . . .,L } to the fusion center. Under the null

hypothesis H0, the power at the output of the energy detec-

tors will be simply the sum of noise power and the power of

any interfering signals that may be present. Given that the

noise level can vary among the nodes, and that the exact val-

ues are unknown, the noise power at the nodes are modeled

as independent lognormally distributed random variables [7].

Consequently, the measurements xi (in dB) are assumed to

be independently distributed Gaussian random variables with

zero mean (after normalization) and variance σ2
ηi

. Under the

alternative hypothesis H1, the total received power measured

at each node is the sum of the noise power and the signal

received from the event. For shadow fading propagation en-

vironments, the event’s signal at each node can be approxi-

mated by a set of correlated lognormally distributed random

variables, in which the mean is a function of the distance de-

pendent path-loss and the variance σ2
s [7]. More specifically,

the received signal power at a node located di meters from the

event is defined as (in dB).

Pi(dB) = P0(dB)−10βlog (di)+si i=1,2,· · · · · · ,L (1)

where β is is the signal decay exponent and si = N (
0, σ2

s

)
quantifies the uncertainty due to shadowing. Given this defi-

nition for the received signal power, the total received power

under the alternative hypothesis is equal to the sum of two in-

dependent lognormally distributed random variables. Various

studies have shown that the sum of two independent lognor-

mal random variables can be approximated as a lognormal

random variable [8]. Using this approximation, the measure-

ments xi, given H1, are assumed to be Gaussian distributed

with means [7].

μi = E [10log10 (1 + SNRi)] (2)

and the covariances

ρi,j = σiσje
−adi,j i, j = 1, 2, · · · , L (3)

where σi (σj) is the variance of xi under H1, di,j is a un-

known separation between ith and jth sensor, and a is the cor-

relation coefficient. At time instant n, the observation vector

received at the fusion center can be represented as x (n)
.
=[

x1 (n) x2 (n) · · · xL (n)
]T

. Under H0, x (n) ∼
N (0,Ση) and under H1, x (n) ∼ N (μ,Σs), where the i−th

element of vector μ is given by (2), the i-jth element of Σs

is given in (3) and Ση = diag
{

σ2
η1

σ2
η2

· · · σ2
ηK

}
. At

the fusion center measurements collected from L active sen-

sors, where each sensor observe the field N times are stored

in the L × N matrix X
.
=

[
x (1) x (2) · · · x (N)

]
.

Taking columns of the matrix X, stack in LN ×1 vector z as:

z
.
= vec (X), the signal model can be written as :

H0 :z ∼ N (0,Σ0)

H1 :z ∼ N (u,Σ1)
(4)

where u
.
=

[
μT (1) μT (2) · · · μT (N)

]T∈
R

KN×1. Under H0, the covariance matrix Σ0 = E
[
zzH

] ∈
R

LN×LN has block diagonal elements Σ
(ni,ni)
η ∈ R

L×L,

1 ≤ ni ≤ N and off-diagonal blocks are zero matri-

ces. Under H1, the spatio-temporal covariance matrix

Σ1
.
= E

[
(z− u) (z− u)

H
]
∈ R

LN×LN has block elements

Σ
(ni,nj)
s

.
= E

[
(x (ni)− μ (ni)) (x (nj)− μ (nj))

H
]

∈
R

L×L with 1 ≤ ni, nj ≤ N captures the spatial correlation

between sensors.

3. TRADITIONAL TEST STATISTICS

In this section we derive decision schemes for the detection

problem introduced in (4), by adopting two traditional mul-

tivariate approaches. The performance of these schemes will
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be compared with the novel approaches that will be proposed

in section 4. To solve the hypothesis testing problem (4) fol-

lowing the the traditional GLRT approach, the test statistic

can be formulated as:

LG1
(x) =

max
Σ0

p (z(1), z(2), · · · , z(M),Σ0)

max
Σ1,u

p (z(1), z(2), · · · , z(M);u,Σ1)
≷H0

H1
γ

(5)

where we have assumed that M independent real-

izations of the data matrix X, or equivalently z
are available, and p (z(1), z(2), · · · , z(M),Σ0) and

p (z(1), z(2), · · · , z(M);u,Σ1) are likelihood functions un-

der hypothesis H0 and H1, respectively. Solving (5), we can

get the final expression as:

LG1(x) =
detΣ̂1

detΣ̂0

≷H0

H1
γ. (6)

By using [3, Lema 3.2.1], we can write Σ̂1 = Σ̂− ûûT with

Σ̂ = 1
M

∑M
m=1 z(m)zH(m) and û = 1

M

∑M
m=1 z(m). Simi-

larly, at a very low SNR we can approximate Σ̂0 ≈ diagΣ̂1 as

μi = E [10log10 (1 + SNRi)] ≈ 0. When M ≫ KN , the

GLRT in (5) is an optimal detector but in the case of large-

scale WSN, when the dimensionality of data (i.e. LN ) is

larger than the sample size M , the singularity of the sample

covariance matrix makes the GLRT degenerate [6]. One way

to mitigate this problem, is to design a detector that avoids

matrix operations that are vulnerable to the singularity of the

sample covariance matrix. Taking into account this fact the

CAV detector proposed in [4] can be used to avoid problems

due to ill-conditioned sample covariance matrix. The CAV

detector is a ratio between the sum of elements of the spatio-

temporal sample covariance matrix and the sum of diagonal

elements of that matrix as:

LG2
(x) =

∑NL
τ

∑NL
υ

∣∣∣ρ(τ,υ)1

∣∣∣∑NL
τ

∣∣∣ρ(τ,τ)0

∣∣∣ ≷H1

H0
γ (7)

where |·| represents absolute value, ρ
(τ,υ)
1 is (τ, υ)-th ele-

ment of the spatio-temporal sample covariance matrix Σ̂1 and

ρ
(τ,τ)
0 (τ, τ)-th diagonal element of Σ̂0. The detector in (7)

does not need any prior information of the signal, the channel

nor the noise power.

4. PROPOSED TEST STATISTICS
In section 3, we have presented the traditional GLRT ap-

proach for detection problem in (4) and argued that it degen-

erates due to singularity issues that arises in detection prob-

lems with small samples sizes and large number of sensors.

Consequently, to circumvent the singularity issue we adopted

CAV detector for our detection. In this section, to cope with

this problem of practical importance, we will move one step

further by factoring Σ1 into a purely spatial and a purely tem-

poral components based on the Kronecker product [9] as

Σ1 = Σ1,T ⊗Σ1,S (8)

where Σ1,S captures the spatial correlation between the ob-

servations of sensors and Σ1,T captures the time correlation

between repeated measurements. Herein, we remark that the

covariance structure (8) makes an implicit assumption that the

temporal correlation structure remains the same at all spatial

locations and the spatial correlation structure is same during

observation time (i.e. 1 : N ) . The structure of separable co-

variances dramatically reduces the number of parameters in

the covariance matrix and therefore demands small M to es-

timate the spatio-temporal covariance matrix [10]. Based on

the factored Σ1, in sub-section 4.1, we derive the proposed

novel GLRT, and in sub-sections 4.2 and 4.3, we propose two

novel ad hoc tests.

4.1. Kronecker Structure based GLRT
The GLRT based on Kronecker structure can be written as:

LG3
(z) =

max
Σ0,T,Σ0,S

p (z;Σ0,T ⊗Σ0,S)

max
u,Σ1,T,Σ1,S

p (z;u,Σ1,T ⊗Σ1,S)
≷H0

H1
γ. (9)

Let z(1), ..., z(M) be a random realizations of z ∼
N (u,Σk,S ⊗Σk,T), where Σk,S and Σk,T are spatial and

temporal covariance matrices, respectively. Whereas, k =
0, 1 represent hypothesis H0 and H1, respectively. The es-

timates of unknown parameters, required in the GLRT (9)

are typically found by using maximum likelihood estimation

(MLE), because it is asymptotically an unbiased and efficient

estimator for these unknowns. Under H1, the likelihood func-

tion of z can be written as [9]:

p (z;U,Ψ1) = c (detΣ1,T)
−NM

2 (detΣ1,S)
−LM

2

exp

[
−1

2

M∑
m=1

tr
{
Σ−1

1,SXM (m)Σ−1
1,TX

H
M (m)

}]

(10)

where Ψ1 = Σ1,T ⊗ Σ1,S, XM (m) = X (m) − U with

u = vec (U) and c = (2π)
− 1

2LNM
. The MLE of un-

knowns U, Σ1,T and Σ1,S is found by taking the derivative

of logp (z;U,Ψ1) with respect to the unknown U, Σ1,T and

Σ1,S and then equating to 0. By doing so, the MLE under the

hypothesis H1 can be written as [9]:

Σ̂1,S =
1

NM

M∑
m=1

(
X(m)− X̄

)
Σ̂−1

1,T

(
X(m)− X̄

)H
(11)

Σ̂1,T =
1

LM

M∑
m=1

(
X(m)− X̄

)H
Σ̂−1

1,S

(
X(m)− X̄

)
(12)

where X̄ = Û = 1
M

∑M
m=1 X(m). Expression (11) and (12)

suggest that Σ̂1,S and Σ̂1,T can be estimated using an itera-

tive method such as the Flip-Flop algorithm. The Flip-Flop
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Algorithm 1 Flip-Flop

1. Choose a starting value for Σ̂1,S as in (13)

2. Find the following

• Estimate Σ̂r
1,T from (12) with Σ̂1

1,S = Σ̂0
1,S.

• Estimate Σ̂1
1,S from (11) with Σ̂1

1,T.

algorithm is obtained by alternately minimizing (10) w.r.t.

Σ1,T keeping the last available estimate of Σ1,S fixed and

vice versa. In [10], numerical experiments have been re-

ported which indicate that the Flip-Flop algorithm performs

very well and is much faster than a more general purpose op-

timization algorithm such as Newton–Raphson [10]. In [11],

it has been discussed that for the case of large M , there is no

need to iterate the algorithm. Taking into account this fact,

we adopt non-iterative Flip-Flop approach and only perform

the the steps given in Algorithm 1. To begin the process of

non-iterative Flip-Flop, we use an initial value of Σ̂1,S as:

Σ̂0
1,S =

1

NM

M∑
m=1

(
X(m)− X̄

) (
X(m)− X̄

)H
. (13)

Under H0 and considering low SNR regime we have

Σ0,T ≈ diagΣ1,T and Σ0,S ≈ diagΣ1,S, and the Likelihood

function is:

p (z;Ψ0) = c (detΣ0,T)
−NM/2

(detΣ0,S)
−LM/2

exp

[
−1

2

M∑
m=1

tr
{
Σ−1

0,SXM (m)Σ−1
0,TX

H
M (m)

}].
(14)

Taking derivative of logp (z;Σ0,T ⊗Σ0,S) with respect to

unknown Σ0,T and Σ0,S and then equating to 0, the MLE of

these parameters can be written as: Σ̂0,S ≈ diagΣ̂1,S and

Σ̂0,T ≈ diagΣ̂1,T. With all these estimated values of un-

knowns, (9) can be written as:

LG3
(z) =

(
detΣ̂1,S

)N (
detΣ̂1,T

)L

(
detΣ̂0,S

)N (
detΣ̂0,T

)L
≷H0

H1
γ. (15)

This structured GLRT has several advantages over the tra-

ditional. Under H1 instead of 1
2NL(NL + 1) parameters, it

has only 1
2N(N+1)+ 1

2L(L+1) parameters to estimate. The

dimensions of these two covariance matrices Σ1,S and Σ1,T

are much smaller than the dimension of full spatio-temporal

covariance matrix Σ1, that is why the computations are much

less demanding.

4.2. Sum-Sum test
Inspired by CAV detector (7), based on spatial and temporal

covariance matrices we propose,

LG4(z) =

(∑L
τ

∑L
υ

∣∣∣ρ(τ,υ)1,S

∣∣∣) (∑N
τ

∑N
υ

∣∣∣ρ(τ,υ)1,T

∣∣∣)(∑L
τ

∣∣∣ρ(τ,τ)0,S

∣∣∣) (∑L
τ

∣∣∣ρ(τ,τ)0,T

∣∣∣) ≷H1

H0
γ

(16)

where ρ
(τ,υ)
1,S and ρ

(τ,υ)
1,T are (τ, υ)-th elements of spatial co-

variance matrix Σ̂1,S and temporal covariance matrix Σ̂1,T,

respectively. Similarly, ρ
(τ,τ)
0,S and ρ

(τ,τ)
0,T are (τ, τ)-th diagonal

elements of Σ̂0,S and Σ̂0,T, respectively. Contrary to GLRT

based detector (15), detector (16) does not involve determi-

nants so it will have robustness against the high dimensional-

ity. Similar to (7), it does not need any prior information of

the signal distribution, the channel and noise power.

4.3. Trace-Trace Test
Motivated by the John’s U-statistic [6], here we propose an ad

hoc test statistic that uses the two separate spatial and tempo-

ral sample covariance matrices achieved through Algorithm

1. The expression for this Ad hoc test is

LG5
(z) =

1

LN
tr
(
Ψ̂S − IK

)2

tr
(
Ψ̂T − IN

)2

≷H1

H0
γ (17)

where Ψ̂S =
Σ̂1,S

1
K tr(Σ̂1,S)

and Ψ̂T =
Σ̂1,T

1
N tr(Σ̂1,T )

. The detec-

tor (17) has robustness against the high dimensionality and it

does not assume any prior information about the signal and

noise distribution.

5. SIMULATIONS
For simulations we consider a wireless sensor network, where

sensors are distributed following a uniform probability distri-

bution and we assume that the event appears at an unknown

position. We analyze the performance of the detection ap-

proaches for different values of L, the number of active sen-

sors and N , the number of samples based on the analysis of

area under the ROC curve (AUC), which varies between 0.5

(poor performance) and 1 (good performance).

In Fig.1 we analyze the the detection schemes for L = 20,

N = 5. The results show that by increasing the value of M ,

of course the detection performances of all detectors increase,

but the proposed schemes perform better than the traditional

schemes. For example for a specific value of AUC, lets say

AUC = 0.9, the proposed detectors LG3
(z) , LG4

(z) and

LG5(z) need M ≤ 50, while the traditional GLRT LG1(z)
and LG2(z) need M ≥ 100.

In Fig.2, we simulate the detectors for scenario where we

have L = 30 and N = 10. From the results it can be seen that

to achieve a good detection performance, the required sam-

ple size M for the traditional approaches is much higher than

the proposed approaches. We can clearly see that for AUC =

0.9, the proposed detectors need sample size M ≤ 100 while

for the same level of AUC, LG2
(z) needs M ≥ 300. We

can also see that the traditional GLRT suffers severely due
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Fig. 1. AUC curves: L = 20, N = 5, σ2
s = 2dB, σ2

n = 2dB

P0 = −20dB

to ill-conditioned sample covariance matrix. From these re-

sults we can conclude that the proposed detection schemes

are performing better than the traditional schemes. Amon-

gest the five detectors discused in this paper, the novel detec-

tors LG4
(z) and LG5

(z) show more robustness. In all of the

cases they have consistently better detection performance as

the AUC curves reach to the reasonable high value at a very

small M .

6. CONCLUSION
In this paper novel signal detection schemes have been pro-

posed with the aim to detect an event by exploiting spatio-

temporal correlation present in the observations received from

the sensors. The traditional detection approaches suffer due

to singularity and ill-conditioned spatio-temporal sample co-

variance matrix. To address this problem, we have proposed

detection schemes by splitting the large spatio-temporal co-

variance matrix into spatial and temporal covariance matrices.

Simulation results obtained, have shown that the proposed

detection schemes consistently have better detection perfor-

mance in the case when the sample size is much smaller than

the dimensionality of data.
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