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ABSTRACT

Multi-microphone speech enhancement systems can often be

decomposed into a concatenation of a beamformer, which

provides spatial filtering of the noisy signal, and a single-

channel (SC) noise reduction filter, which reduces the noise

remaining in the beamformer output. Here, we propose a

maximum likelihood based method for estimating the inter-

microphone covariance matrix of the noise impinging on the

microphone array. The method allows prediction of this co-

variance matrix for non-stationary noise sources even in sig-

nal regions where the target speech signal is present. Al-

though the noise covariance matrix may have several pur-

poses, we use it in this paper for estimating the power spec-

tral density (psd) of the noise entering the SC filter, as this is

important for optimal operation of the SC filter. In simula-

tion experiments with a binaural hearing aid setup in a realis-

tic acoustical scenario, the proposed method performs better

than existing methods for estimating this noise psd.

Index Terms— Multi-Microphone Speech Enhancement,

Noise Covariance Estimation, Noise Power Spectral Density

Estimation, Single-Channel Post Filter.

1. INTRODUCTION

Digital speech applications such as mobile phones, voice-

controlled devices, hearing aids, etc., must be robust to acous-

tical background noise and reverberation. For this reason,

such devices are often equipped with noise reduction / speech

enhancement algorithms. These algorithms can be divided

into single- and multi-microphone methods. Although multi-

microphone methods generally require more space and are of-

ten more demanding in terms of computational and hardware

complexity, they are often employed as they can deliver better

performance than single-microphone methods. More specifi-

cally, multi-microphone methods can be seen as a concatena-

tion of a beamformer algorithm and a single-channel noise re-

duction algorithm; therefore multi-microphone methods can

perform spatial filtering in addition to the spectro-temporal

filtering offered by stand-alone single-channel systems.
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Recently, the Multi Channel Wiener filter (MWF) for

speech enhancement [1] and derivatives thereof, e.g. [2],

have received a significant amount of attention. The MWF is

the optimal linear estimator in mean-squared error sense of

a target signal, given that the microphone signal is the target

signal perturbed by uncorrelated, additive noise. It can be

shown, e.g. [3], that the MWF can be decomposed into a con-

catenation of a Minimum Variance Distortionless Response

(MVDR) beam former and a single-channel (SC) Wiener

filter. While these two systems are theoretically identical,

the decomposed system is advantageous in practice over a

brute-force implementation of the MWF filter. Specifically,

one can exploit that the spatial signal statistics, which need to

be estimated to implement the MVDR beamformer, change

across time at a different (often slower) rate than the signal

statistics that need to be estimated to implement the SC filter.

Most, if not all, SC filters rely on an estimate of the power

spectral density (psd) of the noise entering the SC filter. Con-

sidering a multi-microphone noise reduction system as a con-

catenation of a beamforming algorithm and an SC filter, it is

obviously possible to estimate the noise psd directly from the

output signal of the beamformer, using well-known single-

channel noise tracking algorithms, e.g. [4, 5]. However, gen-

erally speaking, better performance can be obtained by taking

advantage of having multiple microphone signals available

when estimating the psd of the noise entering the SC filter.

The idea of using multiple microphone signals for esti-

mating the psd of the noise that enters the SC post filter is

not new. In [6], Zelinski used multiple microphone signals

to estimate the noise psd observed at the microphones un-

der the assumption that the noise sequences were uncorre-

lated between microphones, i.e., the inter-microphone noise

covariance matrix was diagonal. McCowan [7] and Lefkim-

miatis [8] replaced this often unrealistic model with a diffuse

(homogenous, isotropic) model of the noise field. More re-

cently, Wolff [9] considered the beamformer in a generalized

sidelobe canceller (GSC) structure, and used the output of

an (adaptive) blocking matrix, combined with a voice activity

detection (VAD) algorithm, to compute an estimate of the psd

of the noise entering the SC filter.

In this paper we propose an algorithm which, for each

frequency, estimates the time-varying inter-microphone noise

covariance matrix. Although this noise covariance matrix es-
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timate may have several other purposes, we use it here for

estimating the psd of the noise entering the SC filter. The pro-

posed algorithm shows similarities to the method in [9], but

unlike the slightly ad hoc scheme presented there, we propose

a scheme which is optimal in a maximum likelihood sense.

2. SIGNAL MODEL AND ASSUMPTIONS

Let the noisy signal impinging on the m’th microphone be

given by

ym(n) = xm(n) + vm(n), m = 1, . . . ,M,

where ym(n), xm(n), and vm(n) denote signal samples of

the noisy, clean target, and noise signal, respectively, M > 1
is the number of available microphone signals, and where we

have ignored analog-to-digital conversion and simply used

the discrete-time index n for convenience. We assume, for

mathematical convenience, that the observations are realiza-

tions of zero-mean Gaussian random processes, and that the

noise process is statistical independent of the target process.

Each microphone signal is passed through a discrete

Fourier Transform (DFT) filterbank, leading to complex DFT

coefficients

Ym(l, k) =

N−1∑

n=0

ym(lD − n)wA(n)e
−

2πjkn

N ,

where l and k denote frame and frequency bin indices, respec-

tively, N is the frame length, D is the filterbank decimation

factor, wA(n) is the analysis window function, and j =
√
−1

is the imaginary unit.

We employ the standard assumption that DFT coefficients

are independent across frame and frequency index, which al-

lows us to process each DFT coefficient independently. Thus,

without loss of generality, for a given frequency index, we can

collect the DFT coefficients of frame l for each microphone

in a vector Y (l) ∈ CM as

Y (l) , [Y1(l) . . . YM (l)]T .

Similar equations describe the target vector X(l) ∈ CM and

the noise vector V (l) ∈ CM .

We model the target signal as a point source impinging

on the array. Let d(l) = [d1(l, k) · · · dM (l, k)]T denote the

(complex-valued) propagation vector whose elements dm
represent the acoustic transfer function from the source to

the m’th microphone, evaluated at frequency index k. Then,

X(l) may be written as, X(l) = x(l)d(l), where x(l) is the

target DFT coefficient with frame index l at the frequency

index in question.

Now the correlation matrix ΦY Y (l) = E
[
Y (l)Y H(l)

]

can be written as

ΦY Y (l) = φxx(l)d(l)d
H(l)

︸ ︷︷ ︸

ΦXX (l)

+ E
[
V (l)V H(l)

]

︸ ︷︷ ︸

ΦV V (l)

,

where the superscriptH denotes Hermitian transposition, and

φxx(l) = E[|x(l)|2] is the psd of the target signal.

Finally, let us assume the following model for the devel-

opment of the noise covariance matrix across time,

ΦV V (l) = c2(l)ΦV V (l0), l > l0, (1)

where c(l) ∈ R is a time-varying scaling factor, and ΦV V (l0)
is the noise covariance matrix at the most recent frame index

l0 where the target was absent. Thus, Eq. (1) represents the

evolution of ΦV V (l) when speech is present; the noise pro-

cess does not need to be stationary, but the covariance struc-

ture must remain fixed up to a scalar multiplication. Thus, this

model can be seen as a relaxation of the methodology known

from early single-channel noise reduction systems, where the

noise psd estimated in the most recent noise-only region is as-

sumed to remain constant across time when speech is present.

3. MAXIMUM LIKELIHOOD ESTIMATION OF THE

NOISE COVARIANCE MATRIX

The goal in this section is to derive an estimate of the noise

covariance matrix ΦV V (l), l > l0, that is, when speech is

present. The general idea is to do this based on the output of

a set of linearly independent target cancelling beamformers,

sometimes refered to as a blocking matrix in GSC terminol-

ogy [10], see also [11, Chap.5] and the references therein.

Consider any full-rank matrix B(l) ∈ CM×M−1 which

satisfies

BH(l)d(l) = 0.

Obviously, many such matrices exist. Assume that d(l) is

known and normalized to unit length, and let H(l) = IM −
d(l)dH(l), where IM is the M -dimensional identity matrix.

Then, it can be verified that one such matrix B(l) is given by

the first M − 1 columns of matrix, H(l), that is

[B(l) h(l)] = H(l), (2)

where h(l) is simply the M ’th column in H(l).
Each column of matrix B(l) can be considered a target-

cancelling beamformer, because when applied to the noisy

input vector Y (l), the output Z(l) ∈ CM−1 is only noise

related

Z(l) = BH(l)Y (l) = BH(l)V (l). (3)

From Eq. (3) the covariance matrix of Z(l) is given by

ΦZZ(l) , E
[
Z(l)ZH(l)

]
= BH(l)ΦV V (l)B(l). (4)

Inserting Eq. (1) in Eq. (4) we find

ΦZZ(l) = c2(l)BH(l)ΦV V (l0)B(l), l > l0. (5)

From the Gaussian assumption, it follows that vector Z(l)
obeys a zero-mean (complex, circular symmetric) Gaussian
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distribution, that is,

fZ(l)(Z(l)) =
1

πM−1 |ΦZZ(l)|
×

exp
(
−ZH(l)Φ−1

ZZ
(l)Z(l)

)
,

(6)

where | · | denotes the matrix determinant. The matrix ΦZZ(l)
is invertible when ΦV V (l0) is invertible (see Eq. (5)), which

is usually the case.

Inserting Eq. (5) in Eq. (6), the log-likelihood function L
can be written as

L = log fZ(l)(Z(l))

=− (M − 1) log π − (M − 1) log c2(l)

− log
∣
∣BH(l)ΦV V (l0)B(l)

∣
∣

− c−2(l)ZH(l)
[
BH(l)ΦV V (l0)B(l)

]−1
Z(l).

Maximizing L with respect to the unknown scaling factor

c2(l) leads to the maximum likelihood estimate

c2ML(l) =
1

M − 1
ZH(l)

[
BH(l)ΦV V (l0)B(l)

]−1
Z(l).

(7)

Note that c2
ML

(l) ≥ 0 such that the noise covariance estimate

Φ̂V V (l) = c2ML(l)Φ̂V V (l0), l > l0, (8)

remains positive definite as long as the noise covariance esti-

mate Φ̂V V (l0) obtained in the most recent noise-only region

is positive definite.

Finally, let w(l) ∈ CM denote the linear beamformer

filter such that the beamformer output is given by x̃(l) =
wH(l)Y (l). Then an estimate of the psd of the noise in the

beamformer output is given by

φ̂V V (l) = wH(l)Φ̂V V (l)w(l). (9)

Fig. 1 shows a block diagram of a beamformer-SC fil-

ter noise reduction system including the proposed algorithm

for estimating the inter-microphone noise covariance matrix

ΦV V (l) and the psd φV V (l) of the noise component in x̃(l).

4. SIMULATION EXPERIMENTS

We now present results of simulation experiments with syn-

thetic and real audio signals. More specifically, we study

the performance of the proposed algorithm in estimating the

noise psd φV V (l). The proposed scheme (PROP) is compared

to existing algorithms, namely the algorithms by Lefkimmi-

atis et. al. (LEF) [8] and Wolff et. al. (WOL) [9], which

both make use of multiple microphone signals for estimat-

ing φV V (l). We also compare to the state-of-the-art single-

channel noise psd tracking method by Hendriks et. al. (HEN)

[5], applied to the MVDR output, x̃(l), to demonstrate the

advantage of using multiple microphone signals.

Compute
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Fig. 1. Block diagram of multi-microphone noise reduction

system with proposed algorithm for estimating the psd of the

noise signal entering the SC filter.

Speech and noise signals are sampled at a rate of 16 kHz.

The analysis filter banks use frames of N = 512 samples, and

a decimation factor of D = 256. The analysis window func-

tion is a square-root Hann window. We use an ideal acousti-

cal propagation vector d(l) estimated in an offline calibration

procedure, where the target sound source is played in isola-

tion from a location directly in front of the microphone array

(in an endfire configuration). We use a fixed MVDR beam-

former,

w(l) =
Φ̂−1

V V
(l0)d(l)d

∗

△
(l)

dH(l)Φ̂−1
V V

(l0)d(l)
,

in all simulations, where d∗
△
(l) is the complex conjugate of

the element in vector d(l) corresponding to the reference mi-

crophone (we use d△(l) = d1(l)). The matrix Φ̂V V (l0) is es-

timated from a known noise-only signal region prior to speech

activity; in practice, this requires use of a voice activity de-

tection (VAD) algorithm. For the proposed algorithm, matrix

B(l) is found from Eq. (2). Our implementation of WOL uses

the blocking matrix B(l) = H(l) ∈ CM×M .

The noise psd tracking performance is evaluated using the

symmetric log-error distortion measure

LogErr =
1

KL

∑

k

∑

l

∣
∣
∣
∣
∣
10 log10

(
¯̂
φV V (k, l)

φV V (k, l)

)∣
∣
∣
∣
∣

[dB],

where the frequency index k covers frequencies 300-4500 Hz,

K = 134 is the number of DFT coefficients in this frequency

range, the frame index l covers signal frames with speech ac-

tivity, L is the number of such frames,
¯̂
φV V (k, l) is the noise

psd estimates φ̂V V (k, l) smoothed in a first-order lowpass fil-

ter with a time constant of 50 ms, and φV V (k, l) denotes the

true psd of the noise signal entering the SC filter.

297



4.1. Anechoic Scenario with Modulated Noise

In our first experiment M = 4 microphones are arranged in

a uniform linear array with a constant microphone distance

of 1 cm. The target speaker is located directly in front of the

array at a distance of 3 m, and a diffuse noise field is mod-

eled using 72 equidistant point noise sources arranged in a 3

m diameter circle in the horizontal plane intersecting the ar-

ray. The noise sources consist of independent speech-shaped

Gaussian noise sequences, amplitude modulated by a square

wave function with an amplitude of 10 dB and with a time-

varying modulation frequency which increases from 0.1 to

2 Hz, see the thick black line in Fig. 2A. The microphone

signals are generated under an anechoic (free-field) assump-

tion, in this initial experiment. In this way we try to meet

the underlying assumptions of the proposed method and the

methods that we compare to. Specifically, the noise is ad-

ditive (assumed by all the methods), the noise is Gaussian

(assumed in HEN [5]), diffuse (assumed in LEF [8]), and the

noise covariance matrix is constant across time up to a scalar

multiplier (assumed in LEF [8], WOL [9] and the proposed

method). For each noisy signal, the initial 2.5 s consists of

noise-only, which is used for initialization of the algorithms.

Specifically, for the proposed algorithm, this signal region is

used to estimate ΦV V (l0).
Fig. 2 shows examples of the noise psd tracking perfor-

mance for each of the algorithms for a subband centered at

f = 1250 Hz. The SNR of a given microphone signal (mea-

sured across the full noisy signal) is approximately 0 dB.

For this example, the proposed method (Fig. 2A) is able to

track the underlying noise PSD accurately and with rather

small fluctuations. The other multi-microphone based meth-

ods, LEF, and WOL (Figs. 2B and 2C), perform quite good,

while HEN (Fig. 2D), relying only on the single-channel out-

put signal of the MVDR filter, has difficulties in tracking

these very abrupt changes in noise level.

We repeated this experiment for 20 different target speak-

ers (15 female and 5 male). Fig. 3 plots the LogErr scores, av-

eraged across target speakers, for input SNRs in the range -5

– 10 dB (to change the SNR, the noise variance was adjusted,

while the target signal variance was kept constant). Clearly,

the methods using multiple microphones (PROP, WOL, and

LEF) are better than the single-channel method HEN. The

proposed method is slightly better than LEF and WOL, espe-

cially at lower SNRs.

4.2. Cocktail Party Scenario

We now study the performance in a more realistic acoustic

scenario, namely a cocktail party situation. The target sound

source is located directly in front as before, and 10 compet-

ing speakers are located roughly uniformly in a 10.4 × 12.7

m lecture room, see Fig. 4. As before, the microphone array

consists of four microphones, but here we simulate a binau-

ral hearing aid setup, consisting of two pairs of microphones
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Fig. 2. Noise tracking performance at FFT bin corresponding

to f = 1250 Hz. Thin black line: noisy psd. Thick black

line: true noise psd. Thick gray line: Noise psd estimate. A)

Proposed algorithm (PROP). B) WOL [9]. C) LEF [8]. D)

HEN [5]
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Fig. 3. Average LogErr scores for the proposed algorithm and

algorithms WOL [9], LEF [8], and HEN [5].

(distance 1 cm) on each ear of a listener (we assume the

hearing aids can communicate instantly, and without errors).

Noisy microphone signals are generated by convolving tar-

get and noise signals with impulse responses measured from

the relevant positions in the room to the microphones of dual-

microphone behind-the-ear hearing aids placed on a head and

torso simulator mannequin. The resulting noisy signals have

a duration of 30 s. This acoustical scenario, although synthet-

ically generated, is close to a realistic situation for a hearing

aid user. As before, the initial part of each noisy signal real-

ization is a noise-only region used for initialization.

Fig. 5 shows LogErr for the cocktail party scenario, aver-

aged across the 20 different target speakers, for various input

SNRs; when computing the input SNR, reflections of the tar-

get later than 20 ms of the direct sound are considered noise.

For each target speaker, a new random permutation of the

competing speakers is used. The proposed method is still
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Fig. 4. Configuration of cocktail party scenario in a 10.4 ×
12.7 m lecture room. The target source is located directly in

front of the listener at a distance of 1 meter.

better than the alternatives. The single-channel method HEN

performs better here because babble noise of 10 speakers is

more stationary than the difficult modulated noise source in

the previous example.
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Fig. 5. Average LogErr scores for the proposed algorithm and

algorithms WOL [9], LEF [8], and HEN [5].

5. CONCLUSION

Any speech enhancement algorithm, whether multi- or

single-microphone, relies on knowledge of the disturbing

noise source(s), and often second-order noise signal statis-

tics are estimated based on the available noisy microphone

signals. In this context, we have presented a maximum like-

lihood based method for estimating the inter-microphone

covariance matrix of the noise impinging on a microphone

array. One possible use of this covariance matrix is for esti-

mating the psd of the noise entering the single-channel post

filter in a beamformer-and-post filter speech enhancement

system. We demonstrate in simulation experiments that using

the multiple microphone signals for estimating this noise psd,

as proposed in this paper, is advantageous to estimating the

noise psd directly from the output signal of the beamformer.
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