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ABSTRACT

We consider the problem of indoor user zoning - identifying
regions occupied by users in a room, and tracking using a
grid of passive infrared (PIR) sensors. Under the proposed
scheme, quantized levels of analog signal output from pairs of
PIR sensors are used to determine an occupied zone. Viterbi-
based tracking is employed to further improve the robustness
of zoning and track the zones traversed by a user. Experiment
results are presented to validate the efficacy of the proposed
method for one-dimensional user zoning and tracking.

Index Terms— User zoning, PIR sensing system, Viterbi
tracking.

1. INTRODUCTION

Indoor user zoning, i.e. determining occupied regions within
rooms in a building, and tracking is of interest in the control
of lighting and HVAC systems and building management sys-
tems [1], [10]. We consider indoor user zoning and tracking
using a passive infrared (PIR) sensing system. The system un-
der consideration comprises of PIR sensors spaced apart in a
grid at the ceiling of a room. The processed output of the PIR
sensors is collected at a fusion center where occupied zones
are determined and user movement is tracked.

A PIR sensor provides a low-cost, low-complexity solu-
tion for detecting user presence. A grid of PIR sensors is thus
attractive for spatially fine-grained occupancy determination.
Most of the existing approaches to user localization consider
the binary data output (e.g. presence / no-presence signal)
from individual PIR sensors. As a result, the uncertainty of
the localization is limited by the size of the sensors’ detection
area. Slightly finer localization can be obtained by exploiting
the overlap of detection areas of neighboring sensors. For a
binary sensor network, a particle filtering approach to single
target tracking was considered in [4]. A tracking algorithm
robust to sensor failures was developed in [5]. Simple coarse
localization based on knowledge of spatial topology of a bi-
nary sensing system was considered in [6]. In [12], conditions
under which multiple targets can be counted were presented
under a binary sensing model.
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There is limited literature on using the analog, unpro-
cessed PIR sensor output in order to better understand user
movements. An analytical model was developed in [8] for
the PIR analog output and target tracking algorithms based
on extended Kalman filtering were proposed. In [14], fea-
tures in the PIR analog signal were exploited to extract in-
formation on people movements, under a specific configura-
tion with pairs of PIR sensors facing each other. These works
show that richer information can be potentially extracted from
the raw data, than just presence.

Motivated by the approaches in [8] and [14], we consider
processing the analog signal output from PIR sensors. Our
proposed method is motivated by the following observations
related to the PIR analog output signals and detection regions:
(1) the sign of the PIR trigger output voltage is indicative of
the direction of user motion with respect to the sensor, and
(ii) when the detection regions of different PIR sensors partly
overlap, it is possible to associate their corresponding signal
levels to spatial zones. Output signals from multiple PIR sig-
nals can thus be used to encode spatial zones.

In our proposed approach, each PIR sensor quantizes its
output signal using two threshold values and sends the re-
sult to the fusion center. This ensures low communication
overhead between the PIR sensors and the fusion center. The
transmitted results from a pair of PIR sensors with partially
overlapping detection regions are then used to encode spatial
zones, based on which occupancy in a zone is determined.
The proposed method allows a much finer localization than
that achievable using only the binary output of the PIR sen-
sors. Such user zoning, in practice, may be erroneous, e.g.
due to errors in the thresholding and quantization step. To
deal with this, we consider a Markov model to characterize
human movement, or in other words the transition of spatial
zone occupancy. Viterbi-based tracking [11], [13] is then em-
ployed to determine zone occupancy and track a user based
on the maximized probability state path.

2. PIR SENSING SYSTEM AND SENSOR SIGNAL
DESCRIPTION

We consider a PIR sensing system with multiple PIR sensors
located on a grid with uniform spacing along the ceiling. This
arrangement is typical for lighting systems where the sensor
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Fig. 1. (a) Detection region of the Murata IRS A330ST02
sensor with IML-0669 lens, and (b) output voltage of a PIR
Sensor.

PIR output vallage

is embedded in the luminaire. We assume that the inter-sensor
distance is known and the PIR sensors have overlapping de-
tection regions. The output of an individual PIR sensor is
connected to a fusion center, or central controller, where the
occupied zones are determined. Based on this information,
illumination from the lighting system may be adapted [10].

The core of a PIR sensor is a pyroelectric crystal that
generates a voltage change in response to change in tempera-
ture [3]. A change in temperature may occur due to infrared
radiation from human body as a user comes within the sens-
ing coverage area. Commercial PIR sensors typically include
two sensitive elements wired as opposite inputs to a differ-
ential amplifier to cancel changes in the ambient tempera-
ture [7]. The sensing coverage area of the sensor is usually
shaped by an array of Fresnel lenses, which can be molded
from infrared transmitting plastic materials. A lenses array
creates multiple cones of views, allowing the PIR sensor to
be sensitive to human movement within its coverage area. As
an example, Figure 1(a) shows the detection region of a Mu-
rata IRS-A330ST02-R2 sensor with a Murata IML-0669 lens
for an installed height of 2.5 m. We assume that the geometry
of this region for the sensor-lens module is available (from the
manufacturer data sheet [7]).

The detection region in Figure 1(a) shows the coverage
area, with the dark and light gray cells representing projec-
tions on the two pyroelectric elements. That is, infrared radi-
ation from a dark gray cell in Figure 1(a) is projected by the
lens on one pyroelectric element, while the radiation com-
ing from the light gray cells is projected on the second pyro-
electric element. The signals generated by the two elements
are subtracted to generate the output differential signal. This
sensor-lens module is mainly sensitive to changes along the
direction of its minor axis (left-right in Figure 1(a)). When a
person moves across the sensing area, the two elements sense
the temperature change with a time delay, causing alternate
positive and negative peaks. Figure 1(b) shows the output
voltage signal of a PIR sensor when a person walks below it
along its minor axis. Positive and negative peaks appear one
after the other and their positions relate to the location of the
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Fig. 2. Layout of experimental office room.

person in the coverage area. For a given movement, the signal
amplitude is related to the proximity of the person to the sen-
sor: peaks are larger when a user is close to the sensor than
when further away.

3. PROPOSED USER ZONING AND TRACKING
SCHEME

We shall illustrate the proposed zoning and tracking scheme
using a pair of PIR sensors, for simplicity of exposition, in-
stalled in an experimental office room whose layout is shown
in Figure 2. We shall further discuss one-dimensional zoning,
along the horizontal dimension of the room. The coverage
areas of the two PIR sensors partially overlap. Thus the de-
tection regions of the sensor have overlapping cells as illus-
trated in Figure 3. The entire coverage area may be divided
into spatial cells that are as large as the cells of the detection
region. User presence in a spatial cell results in infrared radi-
ation that in turn corresponds to specific output voltage values
at the two PIR sensors.

The output voltage signal at the PIR sensors is first band-
pass filtered with cutoff at 0.3 Hz and 8 Hz to remove the con-
tinuous signal component and high frequency noise. Denote
the resulting signals by vi(t), & = 1,2. Each signal vy (t)
is quantized using two thresholds, T}, and T},, to character-
ize nearby and far away areas. The quantization is performed
according to the equation:

0 if =Ty, <wi(t) < Ty,
0.5 if Th, <vi(t) < Th,,
ak(t) = —0.5 if _Tk2 < ’Uk(t) < Tku €))
1 if 'Uk(t) > TkZ,
—1 if vk(t) < —Tk2.

Symmetric positive and negative thresholds have been cho-
sen because the PIR analog response is typically symmet-
ric. The thresholds values are set relative to the maximum
range learned for each sensor signal, i.e. T, = o1 M}, and
Ty, = oMy, where My, is the 99.9-th percentile of about
15 minutes of signal v (¢) recorded across several days in an
office environment. The parameters «; and 2 can be learned
from training data or fixed to values that fit the application.
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Fig. 3. Overlapping detection regions of the two PIR sensors
[top] and spatial encoding of the coverage area depending of
the signals’ levels [bottom].

For simplicity, here we manually set «; = 0.05 and as = 0.5.
We have noticed that slight variations of the parameters can
cause minor localization errors, that are typically well recov-
ered by the tracking algorithm.

The key idea is to encode a spatial zone using the quan-
tized signal output (aq(t),az(t)). For example, if the sig-
nal at PIR1 has a small positive amplitude (thus resulting in
a1(t) = 0.5) and the signal from PIR2 is 0 (az2(t) = 0), the
user zone is determined to be 2 on the left side of the room.
The spatial encoding of the zones over the coverage area is
shown in Figure 3. Note that a similar encoding can be ob-
tained for different values of inter-sensor distance, up to a
shift of four cells in terms of the corresponding overlap of
detection regions.

By matching the expected signal levels from the two sen-
sors with the measured ones, it is possible to localize a target
in the coverage area. In practice, this simple approach may
incur in errors due to noise, inaccuracies in the thresholding
and quantization steps.

These errors can be corrected using tracking. Since the
space is discretized here into a number of zones (e.g., 12
zones in the room shown in Figure 3), a natural choice is to
identify each zone with a discrete state in a Hidden Markov
Model (HMM) [11]. Our HMM H = (p;;,ei(a), ;) has
N = 12 hidden Markov states i, 1 < ¢ < N and M pos-
sible observables for each state, a, with 1 < a < M. The
transition probabilities are p;; = p(q; = jlgi—1 = i), with
1 <4,5 < N where ¢ is the hidden state at time ¢. The emis-
sion probability for the observable a from state i is e;(a) =
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Fig. 4. Derivation of the probabilities e;(a) and p;; when the
observable is a = (0, —1) and the previous state is ¢;—1 = 8.
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p(O; = a|q; = i) where O is the observation at time ¢. The
initial state probabilities are m; = p(q1 = ¢). Given a se-
quence of observations O = 01,0, ..., Oy, and the HMM
H = (pij,ei(a),m;), our goal is to find the maximum proba-
bility state path Q; = ¢1,¢2,- - ., g:. This can be done recur-
sively using the Viterbi algorithm.

To define the HMM H, the probabilities 7;, p;; and e;(a)
have to be set. We set the initial state probabilities 7; = 1/N.
The transition probabilities p;; are defined as:

pij:{;@—['i—g'*ﬂ-o.l) i fi-gl<6 )
0 it |i—j| =6,

where P is a normalizing constant that makes p;; a probabil-
ity. Thus, the probability of transition to closer zones is higher
than for zones far away, and it is zero for zones further than
five steps.

The emission probabilities e;(a) reflect the similarity be-
tween the observed signal values and the spatial encoding of
the coverage area. Each observable, a, is a pair of quan-
tized signals from the two PIR sensors, i.e. a = (a1, az),
with a, € {—1,-0.5,0,0.5,1}, k¥ = 1,2. For each state
t =1,...,12 we define a spatial encoding ¢;, shown in Fig-
ure 3, that associates to each zone a pair of quantized sig-
nal values. Let us define the distance between an observed
couple of values a and a code c;, corresponding to a state 1,
as d(a,c;) = 1/4 - (Ja1 — ¢;(1)] + |az — ¢;(2)|). Note that
0 < d(a,c;) < 1. Using the distance d, e;(a) is defined as

€ila) = - (1= d(Cira) G
where E is a normalizing constant that makes e;(a) a proba-
bility. Figure 4 shows an example of the computation of ¢;(a)
and Dij-

Let us denote the user zone at time ¢ with x;. At every
time step t, the Viterbi algorithm recovers @);, the most prob-
able state path through the model H given the observations
available until ¢. At every time ¢, the user zone is found as the
state ¢; of the optimal path ;. An outlier detection strategy is



also used to guarantee a certain path continuity. The one pro-
posed here is inspired by classic statistical test approaches [2].
At each step, the target position x; is determined as:

qt if |Qt - $t—1‘ < 2143507
(@, Wy) if 2AF <|q —z1] <647, (4
Ti—1 if |qt — LCt,l‘ > 6A%U7

Ty =

where A}’ is the average absolute deviation (AAD) of the w
previously selected target locations Wy = {@¢—_qy, ..., T¢—1}-
Here we set w = 5. (g:, W;) computes the average value of
the w + 1 positions ¢; and W;. If the distance between ¢; and
the previous target position is small (less than two times the
AAD of the last w samples), the estimation ¢; is considered
valid and assigned to x;. If the distance is large (more than
six times the AAD of the last w samples), ¢; is considered
an outlier and discarded: x; is set to the previous value x;_1.
In intermediate cases a conservative approach is used where
the target x; is localized in the average position of the last
w + 1 positions g; and W;. We term this zoning and tracking
method online Viterbi tracking.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the online
Viterbi tracker for 1-D zoning and tracking. We also con-
sider two other approaches for comparison. One is final state
Viterbi tracking where user zones are determined based on
off-line processing of an entire data set. The other method is
binary localization based on processing the PIR binary deci-
sion outputs. In this method, when both PIR sensors trigger
a detection, the target is localized in the center of the room
(zones 4 to 9), while if only one PIR detector triggers a detec-
tion, the target is localized on the corresponding side of the
room (zones 2, 3 or 10, 11). If no detection is triggered, the
target is out of the coverage area (zones 1 or 12). For fairness
of comparison, the detection threshold for each PIR is chosen
to be T}, .

To evaluate the proposed approaches, we recorded the PIR
output voltages while a person was walking in the room in dif-
ferent trajectories. The voltage signals are sampled at 10 kHz,
band-pass filtered between 0.3 Hz and 8 Hz and quantized us-
ing (1). The quantized signals are then downsampled at 10
Hz by keeping the mode (i.e. the most frequent value) of the
signals over non-overlapping windows of 1000 samples. User
zones are determined every 100 ms for the binary localization
and online Viterbi methods.

Figure 5 shows the results for the three zoning and track-
ing methods. Four recordings, each of duration over 20 sec-
onds corresponding to 200 points, were made. In (a) a person
walks from left to right and back two times and then stops
under PIR1 for few seconds, as depicted on the top row of the
picture. In (b) a person walks perpendicular to the sensors.
This scenario is challenging because the sensor sensitivity in
the perpendicular direction is lower. Therefore, if a person
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walks perpendicular to the sensors, the PIR output voltage is
lower. In (c) a person walks around the room two times. In
(d) a person crosses the room twice. The approximate trajec-
tories followed by the target are sketched on top of each plot.
The gray area shows the zoning result using binary localiza-
tion, the blue circles indicate the user zone estimated using
the online Viterbi tracker, and the most probable state path
found with the final state Viterbi algorithm knowing all the
data points, (Q20p, is plotted with red crosses.

In the simple case in (a), the binary localization approach
can provide coarse user zoning in the coverage area, while
the online Viterbi method provides accurate zoning and track-
ing. However, in the most challenging scenarios shown in
Figures 5 (b), (c) and (d), the binary zoning method incurs
many errors. In these scenarios, the performance advantage
of the Viterbi tracking method is clear. Note that the final state
Viterbi tracking results in a few errors largely due to outliers
not being filtered out as done in the online Viterbi tracking
algorithm.

5. CONCLUSIONS

We presented a method for indoor user zoning and tracking
with a PIR sensing system located in the ceiling. The paper
demonstrates how statio-temporal processing of raw output
voltages from PIR sensors can provide finer user localization
and improved tracking accuracy in PIR sensor systems. The
performance of the method was shown using commercial PIR
sensors in an experimental setup. The proposed method can
be extended to 2-D zoning using quad-type PIR sensors [9].
Future work will also extend the developed method to multi-
user zoning and tracking.
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