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ABSTRACT

FLANN and generalized FLANN filters exploiting trigono-

metric functions are often used in active noise control. How-

ever, they cannot approximate arbitrarily well every causal,

time-invariant, finite-memory, nonlinear system, i.e., they

are not universal approximators as the Volterra filters. In

this paper, we propose a novel class of FLANN filters, called

Complete FLANN filters, which satisfy the Stone-Weierstrass

theorem, and thus can arbitrarily well approximate any non-

linear, time-invariant, finite-memory, continuous system.

CFLANN filters are members of the class of nonlinear fil-

ters characterized by the property that their output depends

linearly on the filter coefficients. As a consequence, they

can be efficiently implemented in the form of a filter bank

and adapted using algorithms simply derived from those ap-

plied to linear filters. In the paper, we apply a nonlinearly

Filtered-XNLMS algorithm for CFLANN filters and describe

some useful applications in the area of nonlinear active noise

control.

Index Terms— FLANN filters, Complete FLANN filters,

Nonlinear filters, Active noise control

1. INTRODUCTION

The Functional Link Artificial Neural Network (FLANN) has

been first studied in the literature on neural networks as an

effective alternative to the well-known Multilayer Artificial

Neural Network (MLANN). In fact, it is able to offer a sim-

ple structure for hardware implementation, together with a

reduced computational complexity [1]. While the MLANN

exploits linear links and hidden layers, the FLANN is a net

without hidden layers resorting to point-wise functional ex-

pansions of the current input sample that are then linearly

combined to generate the output. The nonlinear expansions

most frequently used are those based on orthogonal trigono-

metric polynomials, involving cosines and sines as basis

functions [2, 3]. These filters have been used, in particu-

lar, to solve problems in nonlinear active noise control [3].

However, as pointed out in [4], the performance of a FLANN

filter can be negatively affected since it does not use cross-

terms, i.e., products of samples with different time shifts.

To overcome this difficulty, the structure of the conventional

FLANN filter has been modified in [5] to include appropriate

cross-terms, and thus a generalized FLANN (GFLANN) fil-

ter has been proposed. It is worth noting that, from a signal

processing point of view, the FLANN and GFLANN filters

are both members of the class of causal, shift-invariant, finite-

memory, nonlinear filters characterized by the property that

their output depends linearly on the filter coefficients [6]. In

addition to FLANN and GFLANN filters, this class includes

most of the popular nonlinear filters commonly used to model

nonlinear systems, as truncated Volterra [7] and generalized

memory polynomial filters [8], to mention only a few. How-

ever, the FLANN and GFLANN filters cannot be considered

universal approximators as the Volterra filters, since they are

not able to approximate arbitrarily well every causal, time-

invariant, finite-memory, nonlinear system. Indeed, FLANN

and GFLANN filters do not satisfy the requirements of the

Stone-Weierstrass theorem [9], which provides conditions

for the approximation of any real continuous function on a

compact set with arbitrary accuracy. In fact, since the prod-

uct of two FLANN or GFLANN functions does not belong

to the set of FLANN or GFLANN functions, respectively,

they do not constitute an algebra. However, it is possible to

“complete” the set of trigonometric FLANN functions so that

they satisfy to the requests of the Stone-Weierstrass theorem.

In this paper, we describe how this extension can be ob-

tained and we define a novel class of filters, called “Complete

FLANN” (CFLANN) filters, that have the remarkable prop-

erty of being able to approximate any causal, time-invariant,

finite-memory, continuous nonlinear system with arbitrary

accuracy.

It is worth noting that the CFLANN filter is another mem-

ber of the class of the linear-in-the-coefficients nonlinear

filters mentioned above. As a consequence, it shares with

the other members of the class the main characteristics de-

scribed in [6], that are the efficient implementation in the

form of a filter bank and the adaptive algorithms simply de-

rived from those applied to linear filters. In particular, in this
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paper we apply a nonlinearly Filtered-X NLMS algorithm for

CFLANN filters and describe some useful applications in the

area of nonlinear ANC.

The paper is organized as follows: The CFLANN func-

tions, satisfying the Stone-Weierstrass theorem, are intro-

duced in Section 2. Their expressions for order P = 1, 2, 3
are given in the form of pseudocodes, used for their genera-

tion, that avoid any repetition or cancellation between terms.

A nonlinearly Filtered-X adaptive algorithm for CFLANN

filters is presented in Section 3. A couple of applications of

CFLANN filters to nonlinear ANC are shown in Section 4,

together with some comments on the obtained results. Con-

cluding remarks follow in Section 5.

2. CFLANN FUNCTIONS AND FILTERS

In this paper we consider the problem of the identification

or approximation of the input-output relationship of a time-

invariant, finite-memory, continuous nonlinear system. As-

suming for simplicity the system to be causal, its input-output

relationship can be expressed in the following form,

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)] (1)

where x(n) is the input signal, with

x(n) ∈ R1 = {x ∈ R, with |x| ≤ 1} ,

y(n) ∈ R is the output signal, N is the system memory-

length, f [. . .] is a continuous function fromRN
1
to R.

FLANN filters of order P approximate (1) with the fol-

lowing input-output relationship

y(n) = a0x(n) + . . .+ aN−1x(n−N + 1) +

c1,0 cos[πx(n)] + . . .+ c1,N−1 cos[πx(n−N + 1)] +

s1,0 sin[πx(n)] + . . .+ s1,N−1 sin[πx(n−N + 1)] + . . .+

cP,0 cos[Pπx(n)] + . . .+ cP,N−1 cos[Pπx(n−N + 1)] +

sP,0 sin[Pπx(n)] + . . .+ sP,N−1 sin[Pπx(n−N + 1)].

(2)

GFLANN filters add to the FLANN filters the cross products

x(n− 1) cos[πx(n)], . . . , x(n−N + 1) cos[πx(n)],

x(n− 1) sin[πx(n)], . . . , x(n−N + 1) sin[πx(n)],

and suitably selected delayed versions as shown in [5].

FLANN and GFLANN filters cannot approximate every non-

linear system in (1) with arbitrary accuracy. For example,

FLANN and GFLANN filters cannot well approximate the

system with input-output relationship y(n) = x3(n)x3(n−1)
because none of their basis functions has this cross-product

in its Volterra series expansion.

In this section we introduce a novel class of filters, based

on sine and cosine functions, that are able to arbitrarily well

approximate any time-invariant, finite-memory, continuous

nonlinear system (1). The demonstration is based on the

well-known Stone-Weierstrass theorem:

Stone-Weierstrass Theorem : “Let A be an algebra of real

continuous functions on a compact set K . If A separates

points onK and if A vanishes at no point ofK , then the uni-

form closure B of A consists of all real continuous functions

onK” [9].

According to the Stone-Weierstrass Theorem every alge-

bra of real continuous functions on the compact RN
1 which

separates points and vanishes at no point is able to arbitrar-

ily well approximate the continuous function f [. . .] in (1). A
family A of real functions is said to be an algebra if A is

closed under addition, multiplication, and scalar multiplica-

tion, i.e., if (i) f + g ∈ A, (ii) f · g ∈ A, and (iii) cf ∈ A, for
all f ∈ A, g ∈ A and for all real constants c. The basis func-
tions of the FLANN and GFLANN filters are not an algebra

because they are not closed under multiplication: the product

of sine and cosine functions (e.g., sin[πx(n)] ·cos[πx(n−1)])
cannot be expressed as a linear combination of the basis func-

tions. However, by using the prosthaphaeresis formulas, such

products can be conveniently expressed as cosines and sines

of sums and differences of the input samples,

sin[πx(n)] · cos[πx(n− 1)] =
1

2
sin{π[x(n)− x(n− 1)]}

+
1

2
sin{π[x(n) + x(n− 1)]}.

Thus, it is easy to find a set of trigonometric functions that

form an algebra. Such a set is composed by all cosine and

sine functions of any order P having the form

cos{π[x(n− i1 + 1)± · · · ± x(n− iP + 1)]},
sin{π[x(n− i1 + 1)± · · · ± x(n− iP + 1)]},

(3)

with i1 = 1, . . . , N, i2 = 1, . . .N, . . . , iP = 1, . . . , N and

their linear combinations. For P = 0, the constant func-

tion equal to 1 is considered. The set of basis functions in

(3) is redundant because it includes repeated terms and terms

which may cancel one to each other when the minus sign

is used. Nevertheless, the resulting set of functions on the

compact R1 is closed under addition, multiplication (for the

prosthaphaeresis formulas), and scalar multiplication, it sep-

arates points1, and it vanishes at no point (since the constant

function is also considered), i.e., it satisfies all the requests of

the Stone-Weierstrass theorem. Thus, the input-output rela-

tionship of a P -th order CFLANN filter, defined by the lin-

ear combination of all the terms in (3) up to the order P ,
is able to approximate the nonlinear system in (1) with arbi-

trary accuracy for sufficiently large P . The pseudocodes used
for the generation of the CFLANN basis functions of order

P = 1, 2, 3, that avoid any repetition or cancellation between
terms, are given in Table 1, Table 2 and Table 3, respectively.

1Two separate points must have at least one different coordinate xi and

sin(πxi) separates these points.
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Table 1. CFLANN basis functions of order P = 1.
for i = 1 : N1

g1(i) = cos[πx(n − i+ 1)]
g2(i) = sin[πx(n − i+ 1)]

end

Table 2. CFLANN basis functions of order P = 2.
for i = 1 : N2

for j = i : N2

g3(i, j) = cos{π[x(n− i+ 1) + x(n− j + 1)]}
g4(i, j) = sin{π[x(n− i+ 1) + x(n− j + 1)]}
end

end

for i = 1 : N2 − 1,
for j = i+ 1 : N2,
g5(i, j) = cos{π[x(n− i+ 1)− x(n− j + 1)]}
g6(i, j) = sin{π[x(n− i+ 1)− x(n− j + 1)]}
end

end

It is easily observed that the number of elements in each of the

functions g1 and g2 isN1, in g3 and g4 isN2(N2+1)/2, in g5
and g6 is (N2−1)N2/2, in g7 and g8 isN3(N3+1)(N3+2)/6,
in g9, g10, g11 and g12 is (N3 − 1)N3(N3 + 1)/6, and in g13
and g14 is (N3 − 2)(N3 − 1)N3/6.

3. NONLINEARLY FILTERED-X NLMS

ALGORITHM

CFLANN functions and related filters belong to the class of

nonlinear filters with finite memory whose output depends

linearly on the filter coefficients. This class of filters has

been studied in [6], and includes Hammerstein and Volterra

filters, memory polynomial filters, FLANN and GFLANN fil-

ters, etc. The CFLANN filter can be added as a further ele-

ment to this class, sharing notation, properties and algorithms

described in [6]. Thus, its input-output relationship can be

expressed as

y(n) = h
T (n)xF (n), (4)

where h(n) is the vector containing L filter coefficients

and xF(n) is a vector whose L entries are formed by the

trigonometric combinations, corresponding to the CFLANN

functions, of the N most recent samples of the input sig-

nal. In adaptive applications using zero-mean signals, a

CFLANN filter does not include the constant term which

corresponds to a bias that should be avoided, as done also for

Volterra filters. Moreover, the CFLANN filter does not in-

clude linear terms that are implicitly contained in the higher-

order terms. The non-homogeneous CFLANN filter of order

P = 2 includes also the functions of order P = 1 and thus
it contains L = 2N1 + 2N2

2 coefficients. Similarly, the non-

homogeneous CFLANN filter of order P = 3 includes also

Table 3. CFLANN basis functions of order P = 3.
for i = 1 : N3

for j = i : N3

for k = j : N3

g7(i, j, k) = cos{π·
[x(n− i+ 1) + x(n− j + 1) + x(n− k + 1)]}

g8(i, j, k) = sin{π·
[x(n− i+ 1) + x(n− j + 1) + x(n− k + 1)]}

end

end

end

for i = 1 : N3 − 1
for j = i : N3 − 1
for k = j + 1 : N3

g9(i, j, k) = cos{π·
[x(n− i+ 1) + x(n− j + 1)− x(n− k + 1)]}

g10(i, j, k) = sin{π·
[x(n− i+ 1) + x(n− j + 1)− x(n− k + 1)]}

end

end

end

for i = 1 : N3 − 1
for j = i+ 1 : N3

for k = j : N3

g11(i, j, k) = cos{π·
[x(n− i+ 1)− x(n− j + 1)− x(n− k + 1)]}

g12(i, j, k) = sin{π·
[x(n− i+ 1)− x(n− j + 1)− x(n− k + 1)]}

end

end

end

for i = 1 : N3 − 2
for j = i+ 1 : N3 − 1
for k = j + 1 : N3

g13(i, j, k) = cos{π·
[x(n− i+ 1)− x(n− j + 1) + x(n− k + 1)]}

g14(i, j, k) = sin{π·
[x(n− i+ 1)− x(n− j + 1) + x(n− k + 1)]}

end

end

end

the functions of order P = 1 and P = 2, respectively, and
thus it contains L = 2N1 + 2N2

2
+ (2/3)N3 + (4/3)N3

3

coefficients.

Let us now consider the CFLANN filters in the framework

of nonlinear active noise control (NANC). An active noise

controller is based on the destructive interference in a given

location between the primary noise, propagating through a

primary path, and a secondary interfering noise, generated

by an active controller and propagating through a secondary

path. The principle of NANC is illustrated in Fig. 1, where

the primary and secondary paths may contain some nonlinear-
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Fig. 1. Principle of nonlinear active noise control.

ities. When the nonlinearities are present in the primary path

or in the input signal x(n), the controllers belonging to the

class of filters described in [6] can be adapted with Filtered-

X algorithms that are similar to those used for linear filters.

In contrast, when the nonlinearities affect the secondary path,

it is necessary to resort to the concept of virtual secondary

path s̃(n), as shown in [4]. With reference to Fig. 1, d̂(n) is
the interfering signal at the cancellation point, and y(n) is the
signal at the output of the nonlinear controller. The length of

the virtual secondary path is denoted asNs. In practice, in the

adaptation rule, the input signal is filtered by a time-varying

filter s̃(n) whose coefficients

[∂d̂(n)

∂y(n)

∂d̂(n)

∂y(n− 1)
· · ·

∂d̂(n)

∂y(n−Ns + 1)

]

, (5)

replace the coefficients of the impulse response s(n) of the
linear case. Each element of the input signal must be fil-

tered by s̃(n), and this fact significantly increases the compu-
tational complexity with respect to conventional algorithms

working in presence of a linear secondary path. The updating

rule used in this paper is a normalized version of that derived

in [4], i.e.,

h(n+ 1) = h(n) +
µ

||u(n)||2
e(n)u(n), (6)

where µ is the step size, u(n) = s̃(n) ∗ xF (n), and the

symbol ∗ means convolution. The squared Euclidean norm

||u(n)||2 = u
T (n)u(n) is used as a normalization factor.

The computational complexity of the adaptive algorithm for-

mulated in this section is on the order of O(LNs + 3L) mul-
tiplications and additions, where L is the number of filter co-

efficients.

4. COMPUTER SIMULATIONS

In this section we consider the application of a CFLANN filter

to NANC. The adaptive algorithm is the nonlinearly Filtered-

X NLMS algorithm of (6).

4.1. Example 1

In this example, we refer to the situation described in [4, Sim-

ulation 2] and [5, Example 2]. The primary and secondary

paths are described by Volterra models given as

d(n) = x(n) + 0.8x(n− 1) + 0.3x(n− 2) + 0.4x(n− 3)

0 0.5 1 1.5 2 2.5 3
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Fig. 2. Learning curves for Example 1: (a) FLANN filter of

order P = 3, (b) second-order Volterra filter, (c) third-order
Volterra filter, (d) GFLANN filter of order P = 1, and (e)

CFLANN filter of order P = 2.

−0.8x(n)x(n− 1) + 0.9x(n)x(n− 2)

+0.7x(n)x(n− 3)− 3.9x2(n− 1)x(n− 2)

−2.6x2(n− 1)x(n− 3) + 2.1x2(n− 2)x(n− 3) (7)

and

d̂(n) = y(n) + 0.35y(n− 1) + 0.09y(n− 2)

−0.5y(n)y(n− 1) + 0.4y(n)y(n− 2) (8)

respectively.

The reference signal is a random noise with a uniform dis-

tribution between −0.5 and +0.5, and the ensemble learning
curves in Fig. 2 are computed over 200 independent runs of

the adaptive algorithm. The five curves in Fig. 2 refer to: (a)

the FLANN filter of order P = 3, with step sizes µ1 = 0.8
and µ2 = 0.01 for the linear and nonlinear parts, respectively;
(b) the second-order Volterra filter, with step sizes µ1 = 0.05
and µ2 = 0.01 for the linear and quadratic parts, respectively;
(c) the third-order Volterra filter, with step sizes µ1 = 0.04,
µ2 = 0.05, and µ3 = 0.1 for the linear, quadratic, and cubic
parts, respectively; (d) the GFLANN filter of order P = 1
using cross-terms with Nd = 9, as shown in [5, Example 2],
with step sizes µ1 = 0.09, µ2 = 0.05, and µ3 = 0.2 for

the linear part, the cosine and sine functions, and the cross-

terms, respectively; and (e) the complete FLANN filter of or-

der P = 2, with step sizes µ1 = 0.16, and µ2 = 0.06 for the
cosine and sine functions of a single input sample, and the co-

sine and sine functions of sum/differences of input samples,

respectively. The step sizes have been tuned for similar initial

convergence speed to provide a fair comparison. The FLANN

and Volterra filters have a memory of 10 samples and include
a linear term with the same memory length. The CFLANN

filter of order P = 2 does not include the linear part and has
a memory of N1 = N2 = 6 samples. In this case, while the
number of coefficients is 65 for the second-order Volterra fil-
ter, 70 for the FLANN filter, 120 for the GFLANN filter, and
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Table 4. Noise attenuation (dB) and number of coefficients

for Example 2.

Filter Noise Number of

attenuation coefficients

FLANN P = 1
N = N1 = 10 12.7 30

FLANN P = 3
N = N1 = 10 13.7 70

GFLANN P = 1
N = N1 = 10, Nd = 3 16.6 78

GFLANN P = 3
N = N1 = 10, Nd = 3 18.9 214

CFLANN P = 2
N1 = N2 = 4 16.9 40

CFLANN P = 3
N1 = N2 = N3 = 4 19.4 128

285 for the third-order Volterra filter, the CFLANN filter has

only 84 coefficients and clearly offers the best performance.

4.2. Example 2

We refer here to the same primary path of Example 1 and to a

secondary path modeled as a Hammerstein filter with a mem-

oryless nonlinearity given by w(n) = tanh[y(n)], followed
by the linear filter

d̂(n) = w(n) + 0.2w(n− 1) + 0.05w(n− 2). (9)

This model efficiently describes the nonlinearities affecting

the power amplifier and the loudspeaker at the controller. In

the experiment, the reference signal is the noise generated by

a fan, recorded at a sampling frequency of 44.1 kHz and then
decimated by a factor 12, with 16 bits per sample. The length
of the used signal is equal to 65 000 samples. Table 4 shows
the noise attenuation and the number of coefficients of the

controllers. The attenuation is defined as the ratio between

the mean noise power values (calculated over the last 10 000
samples) at the cancellation point without and with the active

noise control. As reported in [5, Example 2], the memories of

the linear and nonlinear parts of the FLANN and GFLANN

filters are N = 10 and N1 = 10 samples, respectively. The
GFLANN filters exploit 3 diagonals, as explained in [5]. The
CFLANN filters of order P = 2 and P = 3 do not include a
linear part and have a memory of N1 = N2 = 4 samples and
N1 = N2 = N3 = 4 samples, respectively. It is seen from
Table 4 that the CFLANN filters improve the performance of

the conventional and generalized FLANN filters with a re-

duced number of coefficients.

5. CONCLUSIONS

In this paper, a set of trigonometric functions, the so-called

CFLANN functions, is presented. These functions permit to

approximate any real continuous function on a compact set

with arbitrary accuracy according to the Stone-Weierstrass

theorem. Using the CFLANN functions, it is possible to de-

fine a new member of the class of linear-in-the-coefficients

nonlinear filters, that is the CFLANN filter. Therefore,

CFLANN filters can be efficiently implemented by means

of filter banks and adapted using algorithms simply derived

from those applied to linear filters. In this paper we show that

the CFLANN filters, adapted with a nonlinearly Filtered-X

NLMS algorithm, can be profitably employed to solve some

nonlinear ANC problems. The details of the derivations and

other useful considerations and comparisons, not included

here due to space limitation, will be presented in a paper

under preparation, together with the analysis of the properties

of the CFLANN functions.
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