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ABSTRACT 
 
This paper considers Fourier transform estimation of 
deterministic signals from a finite number of random 
samples. We refer to the recently reported methods by 
Masry facilitating significant acceleration of the 
convergence rates of the Fourier transform estimates with 
the growing number of samples. The acceleration does not 
start uniformly across all frequencies. It starts at DC and its 
close neighborhood. Then it spreads to higher frequencies 
once the average sampling rates significantly increase. In 
this paper we propose a modification of the signal sampling 
methods and appropriate to them data processing 
algorithms to allow moving away from zero the frequency 
about which the acceleration starts to practically any point 
in the frequency domain. We derive an expression of the 
mean-square error of the estimated spectrum as a measure 
of accuracy. Simulation results confirm the validity of the 
results presented in this paper. 
 

1.  INTRODUCTION 
 
Nonuniform sampling combined with suitable algorithms 
can be a useful strategy to process sparse signals using a 
number of samples that is significantly reduced in 
comparison to classical DSP requirements. Considerable 
amount of work has been reported in the theory of 
nonuniform sampling. This work varies depending on 
several factors, such as previous knowledge/assumptions of 
the processed signal or its spectral support, the dedicated 
processing computations, the objective of signal processing, 
etc. 

Estimating signal spectrum from randomly selected 
data is an efficient method for spectral analysis of signals 
with unknown spectral support. It is applicable to estimate 
the Fourier transform of windowed deterministic signals as 
well as the power spectrum density of random processes. 
With random sampling the distribution of the nonuniform 
sampling instants in the observation window is defined 
according to a probability density function(s) which is 
usually selected by the user. The advantage of such 
sampling schemes is that they often allow reducing the 
sampling rates well below the requirements set by the 

classical uniform sampling based DSP. Unbiased estimates 
of the complex-valued Fourier transform using a finite 
number of random samples of deterministic signals were 
introduced in [1]-[4]. 

In this paper we revisit the issue of estimating the 
Fourier transform of windowed deterministic signals from 
randomly sampled data. In particular, we refer to stratified 
estimates [3] and antithetical stratified estimates [4] which 
expedite significant acceleration of the convergence rates 
with the increasing number of samples. It has been proven 
that for sufficiently smooth signals when the number of 
samples N goes to infinity, the mean-square error decays at 
the rate of 31 / N for stratified estimates and 51/ N  for 
antithetical stratified estimates. This compares favorably 
with the standard rate 1/ N  that is normally observed for 
the competing methods [1], [2] or for stratified and 
antithetical stratified, when N is small. However, the 
acceleration of the convergence rates of these estimates does 
not start uniformly across all frequencies. It originates at DC 
and its close neighborhood. Then when N grows, it spreads 
to higher frequencies.  

It was shown in [3], [4] that the accuracy of stratified 
and antithetical stratified estimators depends on the value of 
the analysed frequency. However, there is no closed-form 
formula to determine the number of samples N at which the 
estimate starts to show the fast convergence. Simulation 
experiments showed consistent results that the average 
sampling density at which the fast convergence appears is 
always comparable to twice the value of the analysed 
frequency. Therefore, the benefits offered by the stratified 
sampling scheme come at a considerable price of having to 
significantly increase the sampling rates. This is against the 
original motivation of the use of nonuniform sampling. 

In this paper we propose a modification to these 
methods; we change the scheme of selecting the sampling 
instants and the signal processing algorithms to allow 
moving the frequency about which the acceleration starts to 
almost any frequency of user’s choice. 

  
2. PROBLEM FORMALATION 

  
Our objective in this paper is to use the samples of the signal 
to estimate its Fourier transform represented by  
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             ( ) ( ) ( ) ( )
0

exp 2
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wX f x t w t j πft dt= −∫       (1) 

where ( )w t  is a preselected tapering function and T is the 
observation interval. Three unbiased estimators of (1) were 
introduced and studied in [1]-[4]. All three use randomly 
selected sampling instants to probe the signal. The samples 
are then used to construct unbiased estimators of (1). The 
estimator defined in [1], [2] uses a sampling scheme, to 
which we refer as total random sampling. In this case N 
sampling instants nt  are independent, identically distributed 
(IID) random variables whose probability density function is
( )p t . The estimator is defined as 
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( ) exp 21ˆ ( )
N

n n n
wTR

n n

x t w t j πft
X f

N p t=

−
= ∑ .          (2)

      
 

In [3] a stratified sampling scheme is used. To this end the 
interval [0, ]T  is divided into N nonoverlappings 
subintervals whose sizes are nτ . One sampling instant nt is 
selected at random inside each subinterval. The spectrum is 
then estimated using 

          ( ) ( )
1

ˆ ( ) ( ) exp 2
N

wS n n n n
n

X f τ x t w t j πft
=

= −∑ .            (3) 

The antithetical stratified sampling introduced in [4] divides 
the interval [0, ]T  into / 2N subintervals and then two 
sampling instants are selected in each of them. The first 
sampling instant nt is chosen randomly in the same way as 
stratified sampling whereas the second one is the 
symmetrical reflection of the first one about the centre point 
of their subinterval, i.e. random sampling instant nt is 
accompanied by another sampling instant at 2 n nc t− where  

nc  is the centre point of the n-th subinterval. 
         When assessing the quality of a particular method of 
spectrum estimation a number of criteria could be taken into 
account. Complexity of calculations, required prior 
knowledge about the processed signal and hardware 
constraints are some examples. In our case we concentrate 
mostly on one aspect, i.e. the speed of convergence of those 
estimates to target (1).  This is assessed by analysing the 
mean-square error of the estimators as a function of the 
number of processed samples N.  
        The three estimators are unbiased and their variances 
represent the estimation mean-square-error. When N goes to 
infinity the variances of all three estimators converge to 
zero. Hence, the estimators provide consistent estimation of 
the signal spectrum. However what differs them is the speed 
of convergence. The total random estimator’s error decays 
at a constant rate proportional to1/ N . The proportionality 
given does not depend explicitly on the frequency although 
it is slightly smaller at frequencies where ( )| |wX f  is large. 
The remaining two estimators’ errors decay at rates that 
could be described by ( )α ,1 / N fN where α  grows with 

increasing N from 1  to 3 in the case of stratified sampling 
and even 5 in the case of antithetical stratified sampling. 
These results are however adversely affected by the fact that 
α( , )N f  does not increase uniformly across all frequencies 
for relatively small N. It reaches its larger values at 0f =
and its close neighborhood. The higher the frequency is, the 
larger N must be to see α( , )N f significantly exceeding 1. 
This fact is illustrated in Fig. 1 where plots of α( , )N f
against N are shown for various frequencies f. In the case of 
analysing bandpass signals, such as radio-frequency signals, 
this phenomenon leads to unreasonably high sampling rates 
or missing on high convergence rates in frequency ranges 
that are most meaningful for the user. A conclusive solution 
to resolve this problem is to downconvert the signal to 
baseband and only then sample it. In this paper we propose 
an alternative solution. We show how to modify the 
stratified scheme so that the fast convergence rates originate 
for small values of N  not at DC but at practically any 
arbitrarily selected frequency cf . By choosing this 
frequency in the vicinity of the signal spectrum, the 
advantages of fast convergence rates can be achieved using 
low sampling rates. In this paper, we restrict our attention to 
stratified sampling only. The proposed modifications can be 
also adapted to antithetical stratified sampling. 
      

   
 
Fig. 1.  Illustration of the dependence of α( , )N f for stratified and 
antithetical stratified estimators on the frequency and the number 

of samples  
 

 
3. THE PROPOSED METHOD 

 
This method is of particular interest for signals with 
spectrum concentrated in the neighborhood of some high 
frequency cf . These signals can be modeled using their in-
phase ( )Ix t and quadrature components ( )Qx t : 

               ( ) ( ) ( )cos 2 sin 2I c Q cx t x t πf t x t πf t= −  .               (4) 
These components can be sampled separately and directly 
from the passband signal. To do so, we define two grids of 
sampling points. The first grid is defined in such a way that 
the captured samples of the signal at its time instants are 
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samples of the in-phase component of the signal. This grid 
has sampling points taking place according to 

2I
c

mt
f

=    0,1, 2,..., 1Im M= −                      (5)      

where 2I cM Tf= ⎢ ⎥⎣ ⎦ ,  consequently, 

( ) ( ) ( )1 m
I I Ix t x t= −  .        (6) 

The second grid is designed to capture the quadrature 
component of the signal. The grid is defined as follows  

2 1
4Q

c

mt
f
+

=   0,1, 2,..., 1Qm M= −                 (7)   

where 
4 1

2
c

Q
Tf

M
−⎢ ⎥= ⎢ ⎥⎣ ⎦

, hence 

                            ( ) ( ) ( )11 m
Q Q Qx t x t+

= −                       (8)      

IM  and QM are of the same value or the difference of one, 
therefore, for demonstration we assume that they are equal 
and denoted by M. 

The in-phase and quadrature components of the signal 
represent its complex envelope 

                            ( ) ( ) ( )I Qγ t x t jx t= + .                        (9)      
The Fourier transform of the signal can be written in terms 
of the Fourier transform of its complex envelope ( )Γ f :  

                ( ) ( )1 Γ
2WD cX f f f= −                                            

                              ( ) ( )1
2 I c Q cX f f jX f f⎡ ⎤= − + −⎣ ⎦      (10) 

where 
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1

exp 2
M

Q c Q l l c l
l

TX f f x t w t j π f f t
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− = − −∑ . (12)      

( )w t  represents a window function which is used to reduce 
the effect of truncation. 

Capturing signal samples for all time instants in both 
grids entails collecting an enormous amount of data. For 
signals with specific spectral supports, uniform skip of grid 
points can be deployed to obtain the spectrum with no 
aliasing and reduced uniform sampling density [5].  A much 
more challenging problem is to design a sampling scheme 
with reduced sampling density without a prior exact 
knowledge of the support of the spectrum. We propose a 
method of collecting samples at randomly selected time 
instants in both grids with average sampling density below 
Nyquist. 

The randomly collected samples of  ( )Ix t  and ( )Qx t  
are used to define estimators of the Fourier transform of the 
signal:  

               
( ) ( ) ( )1ˆ ˆ ˆ

2IQs I c Q cX f X f f jX f f⎡ ⎤= − + −⎣ ⎦       (13)      

where ( )ˆ
I cX f f−  and ( )ˆ

Q cX f f−  denote estimators of 

( )I cX f f− and ( )Q cX f f− , respectively. To select K 
random points from the in-phase grid, we divide the 
observation interval into K non-overlapping equal-sized 
subintervals with kM  grid points within the k-th 
subinterval. Then, a grid point is chosen randomly and 
independently within each subinterval. Those grid points are 
randomly selected by assigning a random variable ,k la  

1, 2,..., kl M=  to each grid point within the k-th subinterval. 
These random variables have the probability to be one or 
zero according to 
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Using K  samples to estimate the in-phase component 
which is usually chosen to be / 2N , where N is the total 
number of samples we aim to collect from the signal, the 
estimator can now be written  as follows 
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k I k v
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where  v cf f f= − , /k kv M M=  and 
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Similar approach can be deployed to select the time instants 
in the quadrature grid. Also, the quadrature estimator can be 
written in a similar fashion to the in-phase estimator and it 
has similar statistical characteristics. Therefore, we analyse 
only the in-phase estimator here. 

The in-phase estimator is unbiased according to the 
following calculations  
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The variance of the estimator can be found as follows 
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and 
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The probability of selecting two grid points in one 
subinterval is zero. Hence, the covariance is 

( ) ( ) ( ) ( ), , , , , ,cov ,k l k m k l k m k l k ma a E a a E a E a= − 2

1
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= −

 
(22)                                         

Thus, 
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By completing the square of the second term of (23), we 
obtain 
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The number of grid points inside each subinterval kM is 
almost the same. Consequently, the variance is 
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Thus the variance of the IQ stratified estimator is  
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The interesting difference in the IQ stratified estimator 
compared to the regular stratified estimator is that the 
calculated frequency is vf  instead of f . Hence, the fast 
convergence rates of the proposed estimates appear around 

0v cf f f= − = , i.e. around cf . By choosing cf  in the 
vicinity of the signal’s spectrum, fast convergence of the 
estimates can be achieved in frequency ranges that are most 
meaningful for the user using low sampling rates. 
 

4. NUMERICAL EXAMPLE 
 

We now provide a numerical example to demonstrate the 
efficiency of the proposed IQ stratified method and compare 
it to the existing regular stratified method [3]. We choose 
the following test signal: 

                   ( ) ( ) ( )02 sinc 2 cos 2x t B Bt πf t= .    (27) 
A similar signal was used in [3]. We set the centre 
frequency 9

0 10 Hzf =  and the one-sided bandwidth of the 
signal 610 HzB = . The signal is observed over a rectangular 
window of length 61/ 10 secT B −= = to capture most of the 
energy of the signal. Choosing the frequency cf  which 
defines the grids is important since cf  is the frequency 
around which the accelerated rates appear. Ideally, we 
would like to choose cf to be in the centre of the spectrum 
of the processed signal. This leads to substantial reductions 
in the estimation errors at frequencies where the signal is 
present. However, with no prior knowledge of the centre 
frequency or for multiband signals choosing cf  in the 
neighborhood of the signal spectrum can still be beneficial. 
In Fig.2, the mean-square error in the estimated spectrum is 
shown using regular stratified method and the IQ stratified 
method with different frequency cf . The results are obtained 
by averaging a large number of simulation experiments. The 
error is shown for frequency range that is shifted with 0f  
and spreads over twice the bandwidth of the signal. All the 
estimators use the same number of samples, i.e. 20N = . We 
notice that the proposed method delivers improved results 
over the regular stratified method. We also notice that 
moving the frequency cf towards the centre of the spectrum 
causes further reduction in the estimation error at frequency 
ranges where the spectrum of the signal is present. 

We note that in our method we sample the in- phase 
and quadrature components of the signal from grids of 
sampling instants. In the regular stratified estimate any time 
instant in the observation interval can be a sampling instant. 
As a consequence, our method estimates the discrete-time 
Fourier transform of the signal, whereas the regular 
stratified method estimates the continuous-time Fourier 
transform. However, since cf  is often high, the target of our 
estimator almost represents the Fourier transform estimated 
by the other method. Therefore, a comparison between the 
estimation errors of the two targets is valid. Nonetheless, in 
hardware implementations of the continuous-time sampling 
practical considerations impose confining the sampling 
instants to take place on a multiple of some time-interval 
[6].  

In Fig. 3 and 4 we show the mean-square error of the 
two methods at particular frequency points with increasing 
the number of samples to illustrate the rate of convergence 
of the estimates. The mean-square error is shown at 
frequencies 910 Hzf =  and 9 910 + / 2=1.0005 10 Hzf B= ×
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using grids defined by 910 2cf B= + . In the shown figures, 
the rate at which the regular stratified estimates converges in 
the mean-square sense is 1/ N , whereas the endorsed 
estimates have a mean-square convergence rate of almost 

31/ N after collecting a small  number of samples. 
 

5. CONCLUSION  
 
We proposed an efficient method of estimating the Fourier 
transform of radio-frequency signals with unknown support 
from a finite set of its randomly collected samples. This 
method is clearly advantageous over other random sampling 
approaches in terms of the rate of convergence and 
estimation error. The proposed method is particularly 
suitable to processing signals with energy concentrated in 
the neighborhood of a given high frequency and have tails 
that spread over long ranges of frequency. Unlike the 
classical DSP methods the proposed method requires no 
downconverting or filtering to truncate the unwanted tails 
prior to sampling. The authors would like to point out that 
the results of this paper can be adapted in a fairly 
straightforward way to antithetical stratified sampling and 
also be generalised to multiple dimensions. Another benefit 
of our method is that, in contrast to other random sampling 
approaches, it allows to accurately estimate weak 
components of the spectrum. However, these extensions and 
extra advantages are left to be studied and discussed in 
future work.  
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Fig. 2. Mean-square error in the estimated spectrum using regular 
stratified estimator (solid line) and IQ stratified estimator (dashed 

lines) with different cf  with 20N =  

 
Fig. 3. Mean-square error in the estimated spectrum using regular 
stratified estimator (solid line) and IQ stratified estimator (dashed 

line) at frequency point 910 Hzf =  

 
Fig. 4. Mean-square error in the estimated spectrum using regular 
stratified estimator (solid line) and IQ stratified estimator (dashed 

line) at frequency point 9 910 + / 2 1.0005 10 Hzf B= = ×  
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