19th European Signal Processing Conference (EUSIPCO 2011)

Barcelona, Spain, August 29 - September 2, 2011

ARRAY CALIBRATION WITH MODIFIED ITERATIVE HOS-SOS (MIHOSS)
ALGORITHM

Metin Aktas, and T. Engin Tuncer

Electrical and Electronics Engineering Department,
Middle East Technical University, Ankara, TURKEY
maktas @eee.metu.edu.tr, etuncer @metu.edu.tr
http://www.eee.metu.edu.tr/ sam/index.html

ABSTRACT

Joint direction-of-arrival (DOA) and sensor position estima-
tion for randomly deployed sensors is introduced in Itera-
tive HOS-SOS (IHOSS) algorithm [1]. IHOSS algorithm ex-
ploits the advantages of both higher-order-statistics (HOS)
and second-order-statistics (SOS) with an iterative algorithm
using two reference sensors. The iterative algorithm is guar-
anteed to converge. IHOSS algorithm solves the position am-
biguity by using source signals observed at multiple frequen-
cies and hence it is applicable for wideband signals. In this
paper, we propose Modified-IHOSS (MIHOSS) algorithm to
solve the same problem for narrowband signals. In MIHOSS,
it is assumed that the nominal sensor positions are known. It
is shown that ambiguity problem is solved effectively with-
out any assumption on the position perturbations. The up-
per bound of perturbations for unambiguous sensor position
estimation is presented. The performance of MIHOSS ap-
proaches to the Cramér-Rao bound (CRB) for both DOA and
position estimation.

1. INTRODUCTION

The deviation of array parameters from the assumed model
generates errors for the array processing applications includ-
ing DOA estimation and beamforming. Gain/phase mis-
match of antennas, mutual coupling and antenna position er-
rors are some examples of array modeling errors. Array cal-
ibration is the task of estimating the errors in array model as
well as the DOA and source parameters. In this paper, we fo-
cus on array calibration for the sensor position errors. Sensor
position errors are important in practical applications where
the sensors are distributed in a wide area or there are sensor
displacements due to the platform as in the case of sensors
on the wing tips of a plane.

In this paper, joint DOA and sensor position estimation
is done in a setting where the nominal sensor positions are
known. In this case, it is assumed that there are two refer-
ence sensors whose positions are known perfectly. The rest
of the sensors are distributed randomly in a large area. While
the nominal positions of the distributed sensors are known,
there is no assumption on the perturbation for the sensor po-
sitions. Note that the problem defined above is different than
the partially calibrated arrays (PCA) [3] since the number of
sources is not restricted to be less than the number of refer-
ence sensors. Furthermore, the sensor positions are estimated
in our case as opposed to [3].

In the literature, array calibration problem for the sensor
position errors is investigated in two settings, namely small
error [4] and large error approximations [5]. In small error
approximation, the perturbations are assumed to be small and
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array calibration is performed by using a first order approx-
imation. The first order approximation is not applicable as
the perturbations are increased. Large error approximation
[5] is proposed to circumvent the limitations of the small er-
ror approximation. However the DOA estimation problem is
considered for a uniform circular array and for some fixed
source DOAs. One of the main problems in sensor position
estimation from the knowledge of source observed data is
the ambiguity in sensor positions. Ambiguity arises due to
the wrap around in array steering matrix phase terms.

Previously IHOSS algorithm [1], [6] is presented, which
jointly uses HOS and SOS approaches iteratively for the es-
timation of both source DOAs and sensor positions. The it-
erative process is guaranteed to converge. In THOSS algo-
rithm, except the two reference sensors there is no a priori
information about the sensor positions. The positions of the
two reference sensors are assumed to be known. IHOSS al-
gorithm considers the ambiguity problem in sensor position
estimation and solves the problem by using the source sig-
nals observed at multiple frequencies. Hence it is applica-
ble for wideband signals. In this paper, IHOSS algorithm is
modified for the narrowband signals and the new algorithm
is called as MIHOSS. Since for the narrowband case, source
signals can only be observed at single frequency, MIHOSS
requires to know the nominal sensor positions to solve the
ambiguity problem. It is proved that the ambiguity problem
can be solved if the perturbations are bounded. The upper
bound for the perturbations is also presented.

Both IHOSS and MIHOSS algorithms can effectively be
used in the array calibration problem for the sensor position
errors for different applications. Since different assumptions
are used for IHOSS and MIHOSS algorithms, the compari-
son between them is not fair.

2. PROBLEM STATEMENT

It is assumed that the array is composed of randomly de-
ployed M sensors and there are L far-field sources. Two sen-
sors are selected as the reference sensors. The sensor po-
sitions are randomly perturbed from their nominal positions
except the reference sensors. The positions of the reference
sensors are assumed to be known and the distance between
them is less than or equal to A /2, where A is the wavelength
of the incoming source signals. Under these assumptions, the
received signal vector for the sensor array can be written as,

x(t) = A(®,P° +P)s(t) +v(1), r=1,2,...,N (1)

where, N is the number of snapshots, s(t) = [s1(¢), ...,sz(t)]”
is the L x 1 vector of L sources, v(z) is the M x 1 vec-
tor of Gaussian noise. Source signals are assumed to be
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non-Gaussian and they can be correlated but not coherent.
Noise is assumed to be statistically independent with the
source signals. © = [0y,..., 6] is the source DOA vector,
PO = [p(l)T, ...,pOMT]T and P = [pT,...,p,]T are the nominal
sensor positions and the perturbations in positions, respec-
tively. A(@®,P) is the M x L array steering matrix, composed
of,

2r
I
+ (Phy + Pmy) sin®i]} (2)

[A(@,Po—i—ﬁ)} = exp{ [(p(ril,x+p~m7x) COSQ,'

where, 6; is the direction-of-arrival of i source in azimuth,
p) = [sz,mP?n,y] and Py = [Pmx; Pmy| are the 2D nominal
position of the m'* sensor and the 2D perturbation of the m'"
sensor position, respectively. Since the positions of the two
reference sensors are known, their perturbations are zero, i.e.,
Pm=0, m=1,2. ()7 is the transpose operator.

The goal in this paper is to estimate both DOAs of L
sources and the perturbation parameters of M — 2 sensors.

3. MIHOSS ALGORITHM

In this section, MIHOSS algorithm is introduced for a solu-
tion to the problem described in Section 2. MIHOSS algo-
rithm is based on the IHOSS algorithm [1], which uses the
HOS and SOS approaches jointly. The basic difference be-
tween the IHOSS and MIHOSS is their solution of the am-
biguity in sensor positions. IHOSS algorithm requires ob-
servations at multiple frequencies. On the other hand, MI-
HOSS uses the nominal sensor positions to solve the ambi-
guity problem and can be applied for narrowband signals.

3.1 HOS Based Blind DOA Estimation

In [7], it is shown that HOS approach can be used to find the
DOA and array steering matrix estimates for random sensor
geometries without knowing the sensor positions except the
two reference sensors. In this respect cumulant matrix com-
posed of fourth-order cumulants are used together with the
ESPRIT algorithm. On the other hand, as explained in [1],
this approach can be employed for DOA estimation as long
as the source signals are independent. THOSS algorithm [1]
overcomes this limitation by proposing a new cumulant ma-
trix estimation technique, which is more robust to the depen-
dency between source signals, i.e.,
) H

) H

) )
where A is the estimate of the array steering matrix, A, and
KE-I) = QiA®q§l> A* jed{l1,2}. qy) is the complex con-
jugate of the ;" row of the matrix Q; =TI — AZ;AT. ()T is
the Moore-Penrose pseudoinverse operator. Z; is the L x L
diagonal matrix whose diagonal elements are one except the
i"" element. The " element is set to zero. C, is the L? x L2
source cumulant matrix in the form of,
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Cs(i, j) = Cum (s(t), 57 (t),5m(2), 5,()) “4)
i=Lm—-1)+1, 1<miI<L
j=Ln—1)+k  1<nk<L
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Note that the cumulant matrix estimate in (3) is a gener-
alized cumulant matrix estimate which improves the parame-
ter estimates depending on the accuracy of the array steering
matrix estimation. In [1], it is shown that if the actual array
steering matrix is known, i.e., A= A, the cumulant matrix
estimate in (3) simplifies to,

ARHOSAH ARHOSDAH
€= { AD/RHOSAH  ARFOSAH } ©)
L x L diagonal matrices Rf’ 05 and D are defined as,
RIP = diag(y1, ;... 1) (6)
D = diag (ejzllAC‘”(el), ... ,ej%tlAws(eL)) @)

S*

where ¥ = Cum(s;(t),s7(t),si(t),s;(t)) and A < A/2 is the
distance between the two reference sensors. The reference
sensors are assumed to be located at (0,0) and (A,0) on the
coordinate system for simplicity. Note that, the cumulant
matrix in (5) is in the same form of the correlation matrix in
the ESPRIT algorithm. The only difference is the source cor-
relation matrix defined for SOS is replaced by RY 05 Since
the cumulant matrix in (5) is not available in practice, its es-
timate in (3) is used for the parameter estimation.

The DOA and array steering matrix estimates are found
from the eigenvalue decomposition of C, i.e., CS = SA;
as in the ESPRIT algorithm. Aj; is the diagonal matrix com-
posed of the L largest eigenvalues of the matrix C and 2M x L
matrix S = [ ST ST ]7 is obtained from the eigenvectors
corresponding to these eigenvalues. S; and S, are M X L ma-
trices. The DOA and the array steering matrix estimates are
found by applying the ESPRIT algorithm, i.e.,

s LB
6; = cos ( ErTe l) 8)
A=S,T ()

where /®(i,i) is the phase term of the i/ diagonal element
of the matrix ®. L x L diagonal matrix, ®, and L x L matrix,
W, are related as,

SIS, =0d (10)
Note that knowing the distance and the direction between the
two reference sensors are sufficient for the DOA estimation
as in (8). However, it is not the case for the array steering
matrix estimation. In the ESPRIT algorithm the array steer-
ing matrix estimation is found up to an unknown scale factor
as in (9). To find the scale factor, in addition to the distance
and the direction between the two reference sensors, it is re-
quired to know one of the reference sensor position. Since it
is assumed that the first reference sensor is located at (0,0),
the first row of the array steering matrix has to be consist of
all ones. Then, the actual array steering matrix can be found
from (9), i.e.,

A=AH"! (11)

where H = diag(ayy,ai2,...,air) and a;; is the " row and

7 column of matrix A.



3.2 Unambiguous Sensor Localization

Once the DOA and array steering matrix estimations are
found, sensor locations can be estimated using (2). Due to
27 ambiguity, the elements of the array steering matrix in
(2), corresponding to m'" sensor and i’ source can be rewrit-
ten in the following form,

Qi = ejz;tl[(P%Jrﬁm)u(ei)*lkm,i} (12)
where, k,,; is an integer specified for the m" sensor and the
i source. u(6;) = [—cos(6;),—sin(6;)]” is the unit direction
vector of the i’ incoming source. When all the incoming
sources are considered, the following relation can be written,

(pp +Pm) U(O) = %ékam, 1<m<M (13)
where

ém / (aAm,l) / (aAm,Z) / (aAm,L) ] (]4)

km = km71 km,2 km,L ] (15)

U©) = [u) u(6) | (16)

% stands for the estimation of x and / (d, ;) is the phase term
of the array steering matrix element estimate in (12).

The position perturbation of the m” sensor can easily be
found from (13) in the least squares sense as,

A

f’m(km) = (27[
Note that the position perturbation estimate in (17) takes dif-
ferent values for different k,, values. Therefore, p,, (k) val-
ues are considered as the ambiguous position perturbation
estimates of the m'" sensor.

If the position perturbation is limited, the ambiguity
problem can be solved by selecting the sensor position per-
turbation estimate with minimum norm, i.e.,

By, = argmin || B, (k) | (18)

The upper bound of perturbations for unambiguous sensor
position estimations is given in Lemma-1.

Lemma-1: Let d,, be the minimum distance between ac-
tual and estimated position perturbation of the m'" sensor,
i.e., || By (km) — f)mﬁ) < d,,. Then, the ambiguity problem in
sensor position estimation is solved if the following condi-
tion is satisfied for, 1 <m < M,

2 | (k) -k ) Ut (©)

min
2 1D ek

[Pl <

’ —maxd,,
m

(19)
The proof of Lemma-1 is not given due to space limita-
tions.

3.3 SOS-Based MUSIC Algorithm

Sensor position matrix estimate, P=P0+ 1%, is constructed
using (18) with the nominal sensor positions and used in
the MUSIC algorithm to generate the MUSIC pseudospec-

trum, i.e., ['(0) = (aH(G,f’)GGHa(G,f’)YI where G is

ﬁmw.km) U'(@)-p), 1<m<MQ7
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the M x (M — L) matrix whose columns are composed of the
eigenvectors corresponding to M — L smallest eigenvalues of
the correlation matrix obtained in the SOS approach. The
DOA and the array steering matrix estimates for the SOS
approach are obtained by finding the L largest peaks of the
MUSIC pseudospectrum, i.e.,

L

{6},

i=1

A

arg max I'(6) (20)

[a(6;,P),a(6,,P),....a(6,,P)] (1)

3.4 The Cost Function and The Algorithmic Steps

MIHOSS algorithm iteratively updates the DOA and array
steering matrix estimates using the HOS and SOS approaches
sequentially as summarized in Table 1. The cost function
used at each iteration to select the best array steering vec-
tor estimates for each source is defined by the MUSIC pseu-
dospectrum, i.e.,

(22)

R R A1
I'(&) = (a/'GG"4)

where &; are the array steering vector estimate for the /"
source. Note that the cost function, I'(4;) is non-negative. At

each iteration, n, we have F(é§">) > F(ég"71>) > 0. There-
fore, the proposed MIHOSS algorithm is guaranteed to con-
verge to a certain value, T, at the end of the iterations. How-
ever, the convergence to this value does not mean that the
global optimum is reached as it is the general disadvantage

of all iterative algorithms [8].

4. PERFORMANCE RESULTS

MIHOSS algorithm is compared with the MUSIC [2] and
small error approximation [4], illustrated as SmallError in
the figures, for DOA and sensor position estimations. CRB
[1] is also evaluated for both DOA and sensor position esti-
mation. While MIHOSS and SmallError algorithms are it-
erative methods, MUSIC algorithm is non iterative one. As
stated in Table 1, MIHOSS starts with the SOS MUSIC algo-
rithm and iterates HOS and SOS approaches to update both
DOA and sensor position estimations. Also SmallError [4]
algorithm starts with MUSIC algorithm and iteratively up-
dates both DOA and sensor position estimations using SOS
approach. Therefore, comparing MUSIC algorithm with MI-
HOSS and SmallError algorithms shows the effectiveness of
the iteration processes. Note that for a fair comparison, the
sensor position estimation algorithm described in Section 3.2
is also applied for the MUSIC algorithm.

It is assumed that there are two far-field sources and
M = 10 sensors. Each sensor position except the two ref-
erence sensors is randomly selected from a uniform distri-
bution in the deployment area of 24 x 2A. The reference
sensors are placed at (0,0) and (A /2,0). The positions of the
sensors other than the reference sensors are arbitrarily per-
turbed. The perturbation values are randomly selected with a
uniform distribution. For the parameter estimation, N = 1000
snapshots are collected. The performance results are the av-
erage of 100 trials. At each trial, source signals, noise, the
sensor positions except the reference sensors, the perturba-
tions and the DOA angles of source signals are changed ran-
domly. The difference between the DOA angles of the source



Table 1: Pseudocode for MIHOSS algorithm.

1 n = 0. Find the initial values of the array steering

vector for each source, égo), with SOS approach as in

(21) using the nominal sensor positions.;
2 Termination = true. Estimate the proposed cumulant

matrix from the array output and égn) as in (3). Then,
find the DOA estimates, élH OS using (8) and the array
steering matrix AHOS using (11), for 1 <i<L;

3 Find the sensor position estimates, P=pP'+ f’ as in
(18) using (16) and (14) with éiHOS and AH0S, for
1<i<L;

4 Find éi(sos) using P as in (20). Then, find élgsos) using
P and éi(SOS) asin(21);

5 fori=1toLdo

6 | ifra*)>1@a") then
; él(n+1) _ éESOS), éi(n+1) _ él.(SOS),
F(éE"H)) = F(él(sos)), Termination = false;
8 else
° ‘ égn—kl) _ ﬁ§n>, éi(n—H) _ é,(n>7
10 end
11 end

12 if Termination = false then

13 | n=n+1, GotoStep 2;

14 else

15 Find the final estimate of sensor positions using
6" anda™ 1<i<L;

16 end

signals is set to 40 degrees. The source signals have a uni-
form distribution and the noise is additive white Gaussian
and uncorrelated with the source signals.

The performance results for the DOA and sensor posi-
tion estimations at different SNR values are illustrated in Fig.
1. The sensor position perturbation is limited to 0.14. It is
seen that both MUSIC and small error approach algorithm
(SmallError) have a flooring effect for both DOA and sen-
sor position estimations. As it is seen in Fig. 1, SmallError
algorithm slightly improves the MUSIC performance. It is
also seen that after approximately SNR =7 dB MIHOSS al-
gorithm significantly outperforms and closely follows CRB
for both DOA and sensor position estimations.

In Fig. 2, the performance of the algorithms is presented
for different position perturbations. SNR is set to 30 dB. As
it is seen in Fig. 2, the parameter estimation performance of
MIHOSS algorithm is not affected from the value of pertur-
bations and closely follows CRB. It is also observed in Fig.
2-(b) that, MIHOSS algorithm effectively solves the ambigu-
ity problem up to a perturbation value of 0.42A. The condi-
tion presented in Lemma-1 is not satisfied for further increase
in perturbations and sensor positions can not be found unam-
biguously. Note that DOA estimation is accurate and is not
affected by the sensor position ambiguity as shown in Fig.
2-(a). This is due to the fact that array steering matrix esti-
mate is accurate while the positions are ambiguous. The per-
formance of both MUSIC and SmallError algorithm degrade
significantly for the large perturbation values. SmallError
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Figure 1: (a) DOA and (b) position estimation RMSE values
for different SNR values and sensor position perturbation of
0.11.

algorithm slightly outperforms MIHOSS algorithm only for
very small perturbations (less than 0.011). For the perturba-
tions less than 0.00164 MUSIC outperforms both MIHOSS
and SmallEror algorithms as well as CRB. The reason for
this fact is that iterative processes in MIHOSS and SmallEr-
ror algorithms decrease the estimation performances for the
extremely small perturbations. As shown in (17), pseudoin-
verse operator is used for sensor position estimation, which
is not an exact solution. Iteratively updating sensor positions
may result worse position estimation than the nominal sensor
positions when the perturbation is extremely small. The sim-
ilar explanation is also valid for the SmallError algorithm.
While CRB does not specify any algorithm for sensor posi-
tion estimation, it uses perturbations as unknown parameters
and tries find the minimum variance for both DOA and sen-
sor position estimations jointly. Hence, CRB assumes that
there are always errors in sensor positions even if there is no.
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On the other hand MUSIC algorithm finds the DOA and sen-
sor position estimations in a single step. It does not assume
that there are errors in sensor positions and does not update
the estimations iteratively.
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Figure 2: (a) DOA and (b) position estimation RMSE values
for different sensor position perturbations and SNR = 30 dB.

S. CONCLUSION

A new method for joint DOA and sensor position estima-
tion is presented when the sensors are randomly deployed
and arbitrarily perturbed from their nominal positions. It is
assumed that the distance and the direction between two ref-
erence sensors are known. HOS and SOS approaches are em-
ployed jointly in an iterative manner. The iterative method is
guaranteed to converge. Several simulations are done and
it is shown that the proposed method improves the perfor-
mance of DOA and sensor position estimation significantly
and approaches to the CRB.
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