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ABSTRACT
Antenna array calibration is an important task. In this pa-
per, an online calibration method is proposed for antenna
arrays where the antennas have unknown gain/phase mis-
match and mutual coupling. The mutual coupling matrix is
unstructured and the array is randomly deployed on a plane.
Two reference sensors are assumed to be perfectly calibrated.
The proposed technique uses higher order statistics (HOS)
and the reference sensors to estimate the direction-of-arrivals
(DOA) of multiple signals. The gain/phase mismatch and
mutual coupling parameters are also estimated with a direct
approach. Several simulations are done to show the effec-
tiveness of the proposed method.

1. INTRODUCTION

Practical antenna arrays usually require gain/phase and mu-
tual coupling calibration. This task can be done as offline
or online. In online calibration, the unknown parameters are
found using the information collected by the array for some
unknown incoming sources with unknown DOAs.

Online calibration problem is investigated in detail pre-
viously in [2] - [5]. In [2] an iterative procedure to compen-
sate the mutual coupling and perturbation of gain and phase
parameters is proposed. This method is applicable for only
Uniform Linear Array (ULA) and Uniform Circular Array
(UCA). Also the performance of the algorithm highly de-
pends on the initial conditions. A similar iterative approach
is proposed for randomly deployed sensors in [3]. In this
method, it is assumed that there are no gain/phase errors and
the mutual coupling matrix is symmetric. As an alternative
for the iterative approaches, direct solutions are proposed in
[4] and [5]. However, the applicability of these methods is
limited for either special arrays or for partly calibrated ar-
rays. In [4], the gain/phase errors are not considered. DOA
estimation in partly calibrated arrays is proposed in [5]. In
[5], antenna mutual coupling is not considered and each sub-
array is perfectly calibrated while there are imperfections be-
tween subarrays.

In this paper, a new method is proposed to estimate the
DOA angles of multiple sources, gain/phase and mutual cou-
pling parameters jointly by using a noniterative or a direct
approach. The proposed method is applicable for any arbi-
trary sensor geometry. It only requires two reference sensors
that are perfectly calibrated, which is much less than the re-
quired calibrated sensors in [5]. Therefore, considering the
previous literature, it can be seen that the proposed method
gives a solution for a more general problem. In the proposed
method, higher order statistics, more specifically cumulants,
are used since it is possible to find the DOA angles and actual
array steering matrix directly without being affected by the

unknown gain/phase and mutual coupling parameters. Previ-
ously, it has been shown that HOS approach is effective for
the joint estimation of DOA and sensor positions [1]. Once
the actual array steering matrix and DOA angles are found,
nominal array steering matrix and unknown parameters are
estimated in least squares sense. Simulation results demon-
strate the effectiveness of the proposed method.

2. PROBLEM STATEMENT

It is assumed that the planar array is composed of two ref-
erence sensors and K − 2 randomly deployed sensors. The
reference sensors are perfectly calibrated and there is no in-
teraction between the reference sensors and the remaining
sensors. Therefore, the mutual coupling coefficients between
the reference sensors and K − 2 sensors are zero. Note that
the magnitude of the mutual coupling between sensors are
inversely proportional with the distance between sensors and
may become negligible if the distance exceeds a few wave-
length [2]. Hence, the zero assumptions for the mutual cou-
pling between the reference sensors and the remaining sen-
sors can be realized by placing K − 2 sensors a few wave-
length away from the reference sensors. The reference sen-
sors are placed at (0,0) and (∆,0) without loss of generality
where ∆ ≤ λ/2 and λ is the wavelength. It is assumed that
there are L ≤ K far field sources that are on the same plane
with the sensors and source signals have a non-Gaussian dis-
tribution since fourth order cumulants are used. The array
output vector, x(t) = [x1(t), ...,xK(t)]T , for the narrowband
case can be written as,

x(t) = ΓA(Θ)s(t)+v(t), t = 1,2, . . . ,N (1)

= A(Θ)s(t)+v(t)

where, N is the number of snapshots, s(t) = [s1(t), ...,sL(t)]T

is the L× 1 vector of L sources, v(t) = [v1(t), ...,vK(t)]T is
the K × 1 vector of Gaussian noise. A(Θ) and A(Θ) are
the nominal and actual array steering matrices, respectively.
Θ = [θ1, ...,θL] is the DOA angles of L sources. Γ is the ar-
ray distortion matrix which is the product of K ×K complex
mutual coupling matrix, M, and K ×K diagonal gain/phase
mismatch matrix, T, i.e.,

Γ=MT (2)
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The matrices A(Θ), M and T are defined as

A(Θ) =



1 . . . 1
e j 2π

λ ∆cos(θ1) . . . e j 2π
λ ∆cos(θL)

e j 2π
λ p3u(θ1) . . . e j 2π

λ p3u(θL)

...
e j 2π

λ pKu(θ1) . . . e j 2π
λ pKu(θL)

 (3)

M =



1 m12 0 0 0 . . . 0
m21 1 0 0 0 . . . 0
0 0 1 m34 m35 . . . m3K
0 0 m43 1 c45 . . . m4K
0 0 m53 m54 1 . . . m5K
...

...
...

...
...

. . .
...

0 0 mK3 mK4 mK5 . . . 1


(4)

T = diag
(

1 1 α3e jβ3 . . . αKe jβK
)

(5)

where, θi is the direction-of-arrival of ith source in azimuth,
u(θi) = [cos(θi),sin(θi)]

T is the unit direction vector of the
ith source, pm = [pm,x, pm,y] is the 2D position of the mth sen-
sor. Note that the position of the first and second sensors are
[0,0] and [∆,0], respectively. mi, j is the complex mutual cou-
pling between sensor i and j. αi and βi are the gain and phase
errors of the ith sensor, respectively. Since the reference sen-
sors are assumed to be perfectly calibrated, m12 and m21 are
known and the mutual coupling between the reference sen-
sors and the other sensors are zero, as in (4). Note that due to
the normalization in (3) and (4) with respect to the first and
diagonal elements, the unknown parameters are found up to
a complex scale factor.

The goal in this paper is to estimate both the DOAs of L
sources, {θi}L

i=1, and the unknown parameters in M and T

matrices, {mi, j,αi,βi}K
i, j=3. There are 2(K − 2)2 number of

real unknown parameters in general.

3. HOS BASED ONLINE CALIBRATION

In this section, HOS based online calibration algorithm is
introduced for a solution to the problem described in Section
2. First the cumulant matrix structure is presented and then,
the proposed method is discussed.

3.1 Cumulant Matrix

When the sensor i and sensor j are selected as the reference
sensors, the cumulant matrix is written as

Ci j(k, l) = Cum
(
xi(t),x∗j(t),xk(t),x∗l (t)

)
(6)

where xi(t) is the output signal of the ith sensor, defined as

xi(t) = aris(t)+ vi(t) (7)

where ari is the ith row of actual array steering matrix, A, in
(1). By substituting (7) into (6), the fourth order cumulant
can be rewritten as,

Ci j(k, l) =Cum
(
aris(t)+ vi(t),a∗r js

∗(t)+ v∗j(t),

arks(t)+ vk(t),a∗rls
∗(t)+ v∗l (t)) (8)

Since the noise is assumed to be Gaussian, using the cumu-
lant properties [CP1], [CP2] and [CP4] stated in [6], the cu-
mulants in (8) is simplified as,

Ci j(k, l) = Cum
(
aris(t),a∗r js

∗(t),arks(t),a∗rls
∗(t)

)
=

(
ark ⊗a∗r j

)
Cs (arl ⊗a∗ri)

H (9)

where Cs is the L2 ×L2 source cumulant matrix in the form
of [1],

Cs(i, j) =Cum
(
s f (t),s∗g(t),sm(t),s∗n(t)

)
(10)

i = L(m−1)+g, 1 ≤ m,g ≤ L
j = L(n−1)+ f , 1 ≤ n, f ≤ L

Due to the cumulant property [CP5] stated in [6], when the
source signals are statistically independent, there are only L
nonzero elements in source cumulant matrix, Cs, i.e.,

Cs = diag(γ1,0, . . . ,0,γ2,0, . . . ,0,γL) (11)

and

γi = Cum(si(t),s∗i (t),si(t),s∗i (t)) (12)
= Cs (L(i−1)+ i,L(i−1)+ i) , 1 ≤ i ≤ L

As shown in (12), the non-zero diagonal elements, γi, are lo-
cated with the indices L(i−1)+ i for 1 ≤ i ≤ L. Substituting
(11) into (9) simplifies the relation in matrix form as

Ci j =ADH
ar j

RHOS
s DariA

H (13)

where L×L diagonal matrices RHOS
s and Dari are defined as

RHOS
s = diag(γ1,γ2, . . . ,γL) (14)
Dari = diag(ari(1),ari(2), . . . ,ari(L)) (15)

3.2 Steering Matrix Estimation
In Section 2, sensor 1 and sensor 2 are selected as the refer-
ence sensors in order to find the DOA angles unambiguously.
However, it is possible to use any two sensor pair as reference
in order to find actual array steering matrix. This is required
in order to cope with the number of unknown parameters.

The actual steering matrix is estimated by using the rela-
tions between the cumulant matrices for different reference
sensors, Ci j, 1 ≤ i, j ≤ K. Let Bi j is the 2K × 2K matrix
defined as

Bi j =

[
Cii C ji
Ci j C j j

]
=

[
ADH

ari
RHOS

s DariA
H

ADH
ari
RHOS

s Dar jA
H

ADH
ar j

RHOS
s DariA

H
ADH

ar j
RHOS

s Dar jA
H

]
(16)

Array steering matrix estimate for the jth sensor is found
from the eigenvalue decomposition of Bi j, i.e.,[

Cii C ji
Ci j C j j

][
S1
S2

]
=

[
S1
S2

]
Λs (17)

where Λs is the diagonal matrix composed of the L largest
eigenvalues of the matrix Bi j and 2K × L matrix S =
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[
ST

1 ST
2
]T is obtained from the eigenvectors corresponding

to these eigenvalues. S1 and S2 are K ×L matrices. Substi-
tuting (16) into (17) simplifies the relation, i.e.,

ADH
ari
Φ = S1 (18)

ADH
ar j

Φ = S2 (19)

where L×L matrix Φ is defined as

Φ=
(
RHOS

s DariA
H
S1 +RHOS

s Dar jA
H
S2

)
Λ−1

s (20)

Using (18) and (19), the following relation is obtained, i.e.,

S2 = S1Φ
−1 (DH

ari

)−1
DH

ar j
Φ

S†
1S2Φ

−1 = Φ−1DH
i j (21)

where S†
1 =

(
SH

1 S1
)−1

SH
1 is the Moore-Penrose pseudoin-

verse operator and L×L diagonal matrix Di j is defined as

Di j = D−1
ari
Dar j

= diag(ar j ⊘ari)

= diag
(
ar j(1)
ari(1)

,
ar j(2)
ari(2)

, . . . ,
ar j(L)
ari(L)

)
(22)

where ⊘ is the element by element division.
As it is seen from (21), L× L diagonal matrix DH

i j can
be found from the eigenvalue decomposition of matrix S†

1S2.
The matrix DH

i j is composed of the eigenvalues and Φ−1 is
the matrix composed of the corresponding eigenvectors of
S†

1S2, respectively..
It is important to note that the solution in (21) has a per-

mutation ambiguity. This is due to the fact that there is no
a priori information to guarantee that the pth eigenvalue cor-
responds to the pth source. Let Pi j be a L×L permutation
matrix in case of the Di j in (21). Then, (21) can be written
in more general form as

S†
1S2Φ

−1Pi j =Φ−1DH
i jPi j (23)

Since matrix Di j is a diagonal matrix, the right hand side of
(23) can be written as

Φ−1DH
i jPi j =Φ−1Pi jD̃

H
i j (24)

where
D̃i j = diag((ar j ⊘ari)Pi j) (25)

Substituting (24) into (23) results

S†
1S2

(
Φ−1Pi j

)
=
(
Φ−1Pi j

)
D̃H

i j (26)

It is shown in (25) and (26) that the jth row of actual
array steering matrix, A, is estimated up to a scale factor and
column permutation from the eigenvalue decomposition of
matrix S†

1S2, i.e., diag(D̃i j) = (ar j ⊘ari)Pi j.
The permutation ambiguity is solved by aligning each es-

timated row of actual array steering matrix according two
reference sensors, specifically sensor 1 and sensor 2. This is
done by considering P12 as it is and by changing the order

of the columns of P1 j and P2 j permutation matrices. While
B12 and D̃12 are found once, as the value of j changes from
3 to K, B1 j, B2 j, D̃1 j and D̃2 j are found by using (16) - (26).
The cost function used in this process is selected as{
m(n)

j ,k(n)j

}
= arg min

1≤m j ,k j≤L

∥∥ar2/r1(n)ar j/r2(k j)−ar j/r1(m j)
∥∥2

(27)
where ar j/ri(k) is the kth element of 1 × L vector

(ar j ⊘ari)Pi j. m(n)
j and k(n)j are the indices for alignment,

i.e.,

P12 = [ p12(1) p12(2) . . . p12(L) ]

=
[
p1 j(m

(1)
j ) p1 j(m

(2)
j ) . . . p1 j(m

(L)
j )

]
=

[
p2 j(k

(1)
j ) p2 j(k

(2)
j ) . . . p2 j(k

(L)
j )

]
(28)

where pi j(k) is the kth column of matrix Pi j. Then, using the
relation in (28) the array steering matrix is found up to scale
factor as

Ã =


1L
(ar2 ⊘ar1)P12
(ar3 ⊘ar1)P12
...
(arK ⊘ar1)P12

=




ar1
ar2
ar3
...
arK

D−1
ar1

P12

=
(
AD−1

ar1

)
P12 (29)

where 1L is the 1×L vector with all ones. Note that P12 is
taken as the reference during the permutation ambiguity reso-
lution. The effect of this on the final steering matrix estimate
in (29) is a possible change in the order of the columns of the
actual array steering matrix. This does not pose any problem
since sources and the corresponding DOAs can be ordered
arbitrarily. Therefore, P12 in (29) is replaced by identity
without loss of generality in the following parts.

3.3 DOA Estimation
The DOA angles are estimated using the relation between the
first and the second rows of the actual array steering matrix,
i.e., ar2/r1(k), given in (25) for i = 1 and j = 2. After substi-
tuting (2) - (5) into (1), ar2/r1(k) can be written as,

ar2/r1(k) =
m21 + e j 2π

λ ∆cos(θk)

1+m12e j 2π
λ ∆cos(θk)

(30)

Then, since m12 and m21 are assumed to be known, DOA
angle of the kth source is found as

θk = cos−1
(

λ
2π∆

arg
(

ar2/r1(k)−m21

1−ar2/r1(k)m12

))
(31)

where arg(x) is the argument of complex variable x.

3.4 Calibration Parameter Estimation
After finding the DOA angles, {θi}L

i=1, as in (31), the diago-
nal matrix, Dar1 , is found by substituting (31) into (1), i.e.,

Dar1 = diag
(

1+m12e j 2π
λ ∆cos(θ1), . . . ,1+m12e j 2π

λ ∆cos(θL)
)

(32)
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Then, the actual array steering matrix, A, is estimated by
substituting (32) into (29), i.e.,

A= ÃDar1 (33)

Nominal array steering matrix, A, is found by substituting
(31) into (3). After that, the calibration parameters are found
in least square sense by minimizing the cost function

Q = ∥ΓA−A∥2

= ∥
(
IK×K ⊗AT )z−ar∥2 (34)

where z = vec(Γ) is the K2 × 1 vector composed of the en-
tries of matrix Γ in row-wise order and ar = vec(A) is the
KL × 1 vector composed of matrix A in row-wise order.
However, if some elements of the vector z are known, (34)
can be solved more effectively. Note that this is the case for
us since some elements of array distortion matrix are known
as seen from (4) and (5). Let zk and zu are the column vec-
tors composed of the known and unknown elements of vector
z, respectively. Then, zu can be found as

ẑu = F†
u (ar −Fkzk) (35)

where Fk and Fu are the KL×Nk and KL× (K2 −Nk) ma-
trices composed of the columns of matrix

(
IK×K ⊗AT

)
cor-

responding to the indices of known and unknown elements
of vector z. Nk is the number of known array distortion pa-
rameters. Note that the array distortion parameters can be
found from (35) if the matrix Fu is full-column rank which
requires, L ≥ K2−Nk

K . At the same time, it is required that the
number of sources has to be less than or equal to the number
of sensors for solving the array steering matrix and DOA esti-
mates using (23). Therefore, the required number of sources
for array calibration is related with the number of sensor such
as,

K2 −Nk

K
≤ L ≤ K (36)

Note that, under the assumptions given in Section 2, Nk =
4K − 4. In this case at least K − 2 sources are required for
finding the array distortion parameters. The required number
of sources can be reduced if further a priori information is
available for the array distortion parameters.

After finding the unknown parameters in array distortion
matrix, Γ, the matrices T and M can be found as

T = diag(Γ) (37)

M = ΓT−1 (38)

The relation in (37) and (38) is written since the matrix T is
diagonal and the diagonal entries of matrix M is all one as
given in (4) and (5).

4. PERFORMANCE EVALUATION

The performance of the proposed algorithm is evaluated for
the DOA, gain/phase and mutual coupling parameter estima-
tions. Mutual coupling parameters are the complex valued.
Since to the best of our knowledge there is no online cali-
bration for the random sensor deployment and unstructured

calibration parameters, Cramér-Rao bound (CRB) is used
to show the effectiveness of the proposed algorithm. The
derivation of the CRB is not given due to space limitation.

It is assumed that there are L = 4 far-field sources and
K = 6 sensors. Each sensor position except the two reference
sensors is randomly selected from a uniform distribution in
the deployment area of 2λ × 2λ . The reference sensors are
placed at (0,0) and (λ/2,0). N = 1000 snapshots are col-
lected. The performance results are the average of 100 tri-
als. At each trial, source signals, noise, the sensor positions
except the reference sensors, the gain/phase mismatch and
mutual coupling parameters and the DOA angles of source
signals are changed randomly. The DOA angles are selected
randomly in the range of (30,150) degrees. The gain terms
in mutual coupling parameters are selected randomly in the
range of (0.1,0.3), while it is (0.8,1.2) for the gain terms
of the gain/phase mismatch parameters. The phase terms
of both mutual coupling and gain/phase mismatch param-
eters are changed randomly in the range of (−10,10) de-
grees. The source signals are statistically independent and
a uniformly distributed. The noise is additive white Gaus-
sian and uncorrelated with the source signals. There are
(K −2)2 − (K −2) = 12 complex unknown mutual coupling
parameters that should be estimated. Note that these param-
eters are in an unstructured matrix given in (4). In addi-
tion, there are K − 2 = 4 complex unknown parameters for
gain/phase mismatch as in (5). The proposed algorithm esti-
mates L unknown DOA angles and (K − 2)2 = 16 unknown
complex parameters jointly. The figures in this part show the
average error for all parameters.

The DOA estimation performance of the proposed
method is presented in Fig. 1. The algorithm accurately es-
timates the DOA angles as the signal-to-noise ratio (SNR)
increases.
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Figure 1: Performance of the proposed algorithm for DOA
estimation.

The performance of the proposed algorithm for estimat-
ing the mutual coupling parameters is presented in Fig. 2 and
Fig. 3. In Fig 2, the average error for the estimation of gain
terms in mutual coupling matrix is presented while the error
for the phase is given in Fig. 3. As it is seen from these fig-
ures, mutual coupling gain terms can be estimated accurately
while there is a large margin of improvement for the phase
terms. The main reason for the performance in Fig. 3 is due
to the small gain values for the mutual coupling parameters.

The estimation performances for gain/phase mismatch
terms are presented in Fig. 4 and Fig. 5. In Fig. 4, the
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Figure 2: Performance of the proposed algorithm for the es-
timation of the gain terms of the mutual coupling matrix.
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Figure 3: Performance of the proposed algorithm for the es-
timation of the phase terms of the mutual coupling matrix.

estimation performance of the gain terms is presented while
Fig. 5 is for the phase terms. As it can be seen from these fig-
ures, both gain and phase terms can be estimated accurately
as the SNR increases. Since the gain terms are sufficiently
large, the estimation performance for the phase terms is also
good.
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Figure 4: Performance of the proposed algorithm for the esti-
mation of the gain terms of the gain/phase mismatch matrix.
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Figure 5: Performance of the proposed algorithm for the esti-
mation of the phase terms of the gain/phase mismatch matrix.

5. CONCLUSION

In this paper, a new method is proposed for the joint es-
timation of DOA angles, mutual coupling and gain/phase
mismatch for antenna arrays. The proposed online calibra-
tion method can be applied for sensor arrays randomly de-
ployed on a plane with an unstructured mutual coupling ma-
trix. The proposed technique uses Higher-Order-Statistics
(HOS) for parameter estimation. This is specially conve-
nient since DOA angles can be estimated when there are both
mutual coupling and gain/phase mismatch errors. CRB ex-
pressions are derived in order to evaluate the performance
of the proposed method. Several experiments are done and
it is shown that parameters are estimated accurately by the
proposed method.
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