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ABSTRACT

In this paper a weighted Fastmap (WFM) algorithm is pro-
posed in which more than one pair of anchor nodes is used to
evaluate the one-dimensional coordinates of the unknown
nodes while in the original Fastmap (FM) algorithm only one
pair of anchor nodes was employed. However, some nodes
might be too far from the anchor nodes thus resulting in a
high coordinate estimation error. This motivates the use of
the WFM but at a slight increase in the computational com-
plexity. The optimal WFM weights were determined via
(constrained) minimization of the mean-squared error (MSE)
of the estimated node coordinates. A simplification of the
WFM is also introduced, called the averaged FM (AFM),
where the complexity is reduced at the expense of the WFM
performance. Both the WFM and AFM exhibit improved
performance over the original FM algorithm.

1. INTRODUCTION

A wireless sensor network (WSN) is a network of a large
number of wireless devices able to cooperatively monitor
many applications and tasks. Originally, the development of
WSNs was motivated by military applications such as battle-
field surveillance. However, WSNs are now proposed in
many civilian application areas, including environment and
habitat monitoring, healthcare applications, home automation
and traffic control [1], [2].

One important feature of sensor networks is that the po-
sition of the sensor nodes does not need to be engineered or
pre-determined and this allows random deployment of sen-
sors in the monitored region. This means that sensor network
protocols and algorithms must possess self-organizing capa-
bilities [3].

Since the main purpose of WSNs is gathering informa-
tion or data for a specific task or application, the data may be
useless if the location of the sensor node transmitting the data
is not known itself. For some applications the actual location
of the sensor node is the required information to be transmit-
ted. That is why WSNs and position location of the sensors
are often associated with each other. So, accurate and low-
cost sensor localization is a critical requirement for the de-
ployment of wireless sensor networks in a wide variety of
applications [4].

Wireless location has received considerable attention
over the past 10 years. Research in wireless position location
was boosted by the requirements of the U.S. Federal Com-
munications Commission (FCC) that asked for all wireless
service providers, including cellular, broadband PCS and
wide-area specialized mobile radio (SMR) licensees, to pro-
vide location information to Emergency 911 (E-911) public
safety services. The wireless carrier should be able to report
the location of all E-911 callers with an accuracy of 125 m
(410 ft) in 67% of cases [5], [6].

Recently, an algorithm called Fastmap (FM) has been
proposed for node localization in WSNs [7]. The main ad-
vantage of this algorithm is its low computational cost com-
pared to other algorithms doing the same task - such as met-
ric Multidimensional Scaling (MDS) [7], [8]. This algorithm
requires three anchor nodes (in the case of 2D localization) to
be located on the vertices of a right-angled triangle. In [7] it
has also been stated (without further analysis) that the anchor
nodes should be placed on the edge of the network – this was
based on simulation results. In [9], the mathematical analysis
for the FM algorithm was carried out. Moreover, a modified
version of the FM was later proposed and analysed in [9].

It was also observed in [9] that for nodes far located
from the anchor nodes, the FM coordinate estimation error is
large due to the high distance measurement error. This prob-
lem motivates the use of a weighted version of the FM algo-
rithm where now more than one pair of anchor nodes is used
to locate the one-dimensional coordinates of unknown nodes.
So in the proposed algorithm the result is that we allocate a
larger weight to the estimate generated by FM using anchor
node pairs closer to the unknown node (compared to the es-
timates from the anchor node pairs further located from the
unknown node). The price paid for this new weighted FM
(WFM) algorithm is a slight increase in the complexity. The
analysis of the proposed WFM algorithm in terms of the un-
known node coordinate MSE is presented. Due to the paper
size limitation the analysis is implemented (without loss of
generality) on only the x-coordinate (as the procedure is simi-
lar in the case of the y-coordinate). Finally, a simplification
of the WFM is also presented in which the weights are all
constrained to be equal. We will call this approach the aver-
aged FM (AFM).

A brief description of the original FM algorithm is given
in section 2. The bias and the variance of the estimated x-
coordinate are derived in section 3. Our proposed WFM al-
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gorithm and its analysis in terms of MSE is presented in sec-
tion 4. Finally, simulation results and conclusions are given
in sections 5 and 6 respectively.

2. THE FASTMAPALGORITHM

The FM algorithm was first proposed by Falutsos and Lin in
1995 [10]. It is viewed as a distance mapping algorithm or a
dimension reduction method. The distance matrix, also
known as a (dis)similarity matrix, is the only given input and
it represents a map of N points in p-dimensional space. The
FM algorithm aims to find the coordinates of the N points
(Oi) or objects in a k-dimensional space (k < p) whose
Euclidean distances will match the distances of the given

NN  distance matrix.
The first step, and a basic element of the FM algorithm,

is to select two objects (Oa and Ob) to form the projection
line. These objects are called pivots [10]. The two pivots
should be selected such that the distance (dab) between Oa

and Ob is maximized. To accomplish such a task Falutsos and
Lin proposed a linear heuristic algorithm, based on “choose-
distant-objects” [10].

Figure 1: Calculation of coordinate xi via projection onto the
line Oa - Ob.

The second step is to project any other i-th object Oi

onto the pivot line and first find its x-coordinate by employ-
ing the cosine rule [10]. Mathematically, to get the first coor-
dinate of Oi, we apply Pythagoras’ Theorem for the two tri-
angles (as shown in Fig. 1) and subtract the two equations to
get the coordinate xi (measured from Oa on the line connect-
ing Oa and Ob):
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where dij is the distance between any two objects i and j.
The third step is to consider an imaginary hyper-plane H

that is perpendicular to the line Oa - Ob and project all the
objects onto this hyper-plane. If Oi and Oj are two objects and
their projections on H are O'i and O'j respectively, then it can
be shown that the distance d'ij between the projected objects
on H is given by:

  222'
jiijij xxdd  , Nji ,,2,1,  . (2)

The ability to compute the distance d'ij allows for further
projection onto a second line which lies on the hyper-plane,
H, and is orthogonal to the first line Oa - Ob. This can solve
the problem for the 2-dimensional ‘target’ space. The same

steps above can be applied recursively, k times, thus solving
the problem for any k-dimensional space [10].

The main advantage of the FM algorithm is its low
computational complexity compared to other dimensional
reduction algorithms such as metric MDS [7]. If N is the total
number of objects and k is the dimensionality of the target
space, then the total FM cost is O(kN) compared to O(N3) for
metric MDS. However, FM is sensitive to outliers and coor-
dinates alignment [7], [11].

3. THE BIAS AND VARIANCE OF THE FASTMAP
ALGORITHM ESTIMATE

In this section, the mathematical representation of the bias
and variance of the x-coordinate estimate for the FM
algorithm will be derived. Without loss of generality the
same approach can be applied to the y-coordinate. Recall
from [7] and [9] that the pairwise distance estimate will con-
tain some measurement errors which are amplified with the
increasing distance between the nodes. Such an error can be
modelled as multiplicative normal noise with zero mean and

a certain standard deviation. Thus the measured distance ijd̂

will be given by:

ijijijij nddd ˆ , Nji ,,2,1,  (3)

where ijn is a zero-mean, normal, random variable with

variance 2
n .

Now, consider a network with N nodes whose positions

are uniformly distributed between 0 and A, i.e., ),0(~ AUxi

and ),0(~ AUyi , where A is the length of the side of the

network, and hence the mean position of all nodes in the

network will be 2/A .
If no measurement error is incurred in the distance

measurement, then the x -coordinate of node i is given by
(1). However, due to the measurement error, (1) can be re-
written as follows (i.e., for the noisy estimate):
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Note that in [9], it was assumed the distance between the two
anchor nodes does not contain any measurement error since
their positions are exactly known with respect to each other.
This assumption will give the following result:
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However, if noise among anchor nodes is also to be consid-
ered, then (4) can be re-written to give the following estimate
for xi:
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where
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The mean of the estimate ix~ in (6) is given by:
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and the bias of (6) can be evaluated as follow:
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Substituting (8) into (9) we get:
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To evaluate  abKE we can use a Taylor’s series approxima-

tion:
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Note that Kab will be 1 if the noise measurement in the an-
chor nodes is neglected and in this case (10) becomes:
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The variance of estimate ix~ in (6) can also be evaluated as

follows:
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and
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 is defined in (8).

Once again, for noiseless distance measurements among
anchor nodes, then (14) can be simplified to give:
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The MSE of the xi estimate is obtained as follows using (13)
and (16):
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Note that in section four, our proposed algorithm will
require the calculation of the bias )( ˆixb from (13) and the

variance )( 2
ˆix from (16). However, these need the exact

distance measurements (i.e., dai and dbi) which we will not
have in a practical scenario. So in our algorithm, both (13)
and (16) will be approximated using the estimated (or meas-

ured) distances (i.e., aid̂ and bid̂ ). Finally, we will assume

that the noise variance ( 2
n , in both (13) and (16)) is also

known a-priori.

4. WEIGHTED FASTMAPALGORITHM (WFM)

The MSE in (17) may sometimes be greater than we can tol-
erate. This motivates us to examine an alternative way to
reduce this MSE, and so we propose to use more than one
pair of anchor nodes (with appropriate weighting to combine
the different estimates).

To begin with, assume that we have M pairs of anchor
nodes and that each pair is placed as shown in Fig. 2 (red

circles). Let imx̂ be the estimate of the xi-coordinate obtained

using FM in (4) with the m-th anchor node pair. Equation (6)
can be used if the noise in the distance measurements among
the anchor nodes is also to be considered. But, for ease of
analysis, the noise amongst the anchor nodes will be ne-
glected and we will assume that each anchor node knows
exactly its position as well as other anchor nodes positions.
Then, for M anchor node pairs, we propose the following
weighted estimate of the xi-coordinate:
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where im is the weight value applied to the imx̂ estimate

subject to the constraint:

1
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In order to evaluate the MSE of the xi-coordinate estimate for
the WFM, both the variance and the bias of (18) should be
evaluated. Since the MSE was defined in (17), it is clear that
(subject to (19)):
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where for simplicity of notation we have written 2
im =

]ˆ[var imx = ])]ˆ[ˆ[( 2
imim xExE  and ]ˆ[bias imim xb  =

iim xxE ]ˆ[ .

Now re-write (20) as:
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To find the values of iα such that (20) or (21) is mini-

mized we form the Lagrangian:
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Taking the partial derivative of (22) with respect to iα gives:
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Combing the constraint ( 1eαT
i ) with (24) gives:
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and substituting back into (24) we get:
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Now, the terms 2
im and imb that make up (26) follow from

(13) and (16) and so to get the minimum MSE (MMSE) of
the WFM estimate, substitute (26) into (21) to give:
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Finally, one last case is worth consideration. If all the

weights are chosen as equal (i.e., im
M

im ,,
1

 ) then

from (21) the MMSE becomes:

  eAe i
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As mentioned in the introduction, this scenario is called the
averaged FM (AFM) and its advantage is the reduced com-
plexity, i.e., the weighting coefficients do not need to be cal-
culated via (26).

5. SIMULATION RESULTS

We consider a network of N=100 sensor nodes, uniformly
distributed within a square of unit area. The term nij in (3) is

Gaussian with zero mean and variance 2
n . We consider five

different placements of the anchor nodes as shown in Fig. 2.
All simulations were obtained with 100 independent Monte
Carlo runs.

Note that the estimation of iα , via (26) requires both

imb and 2
im for m=1, 2... , M, which come from (13) and

(16) respectively. This requires knowledge of 2
n , iam

d and

ibm
d , where am refers to the m-th anchor node Oa, etc. We

will assume that 2
n is known in advance but in practice we

do not have a-priori knowledge of the exact iam
d and ibm

d .

Thus, both iam
d̂ and ibm

d̂ will be used instead.

Figure 3 shows the (sample) mean absolute error

(MAE), 



N

i

ii xx
N

1

ˆ
1

, (where ix̂ in (18) uses im from

(26)), versus the noise variance 2
n , for the original FM,

WFM and AFM with M=2 and 5 pairs of anchor nodes. We
can clearly see the substantial improvement of the WFM over
the original FM algorithm. Also, we can see the difference
between WFM (M=2) and WFM (M=5), but the improve-
ment is not as substantial. This leads us to ask: how many
pairs of anchor nodes should be used for WFM?

Figure 4 shows the MAE versus the number of anchor
node pairs (M) for the WFM and AFM (in which all weight
coefficients are equal) for three different noise variances.
With M=1, we get the original FM. In general, the WFM
algorithm outperforms the AFM, especially at higher noise
variance. However, as the number of pairs increases, the im-
provement in both WFM and AFM flattens out.

One final remark is on the computational complexity of
the WFM algorithm compared to the original FM. In the
original FM the complexity is of the order of O(kN) while it
is O(kMN) for the WFM, where k is the dimensionality of the
target space. It is clear that the complexity of the WFM is
still linear in the total number of unknown nodes N. How-
ever, the complexity increases by a factor M - the number of
pairs of anchor nodes used in the localization process.

6. CONCLUSION

In this paper a WFM algorithm for sensor node localization
in a wireless sensor network was proposed. The motivation
for the WFM algorithm comes from the poor performance of
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the original FM compared to some other node localization
methods.

It was observed that the original FM produces bad coor-
dinate estimation for nodes that are distant from the anchor
nodes. This is due to the high measurement error incurred in
the distance estimation between the sensor nodes and the
anchor nodes. To solve this problem a weighted version of
the FM algorithm produces a better coordinate estimate of
the unknown nodes at the cost of a slight increase in the
complexity. The optimum weighting coefficients of the
WFM algorithm in terms of the MMSE have been presented.

It has been shown that the WFM algorithm improves the
overall performance substantially compared to the original
FM algorithm but with a slight increase in the complexity.

Figure 2: (100 unknown nodes-black) (Anchor nodes-
red) (a) configuration 1, M=1; (b) configuration 2, M=2; (c)
configuration 3, M=3; (d) configuration 4, M=4; and (e) con-
figuration 5, M=5. Note that all “squares” have sides of unit
length.

Figure 3: The mean absolute error (MAE) for the x-

coordinate estimate versus the noise variance ( 2
n ) for the

original Fastmap, weighted Fastmap and averaged Fastmap,
where M is the number of anchor node pairs.
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