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ABSTRACT

We introduce an extension of the population Monte Carlo
(PMC) methodology to address the problem of Bayesian in-
ference in high dimensional models. Specifically, we intro-
duce a technique for the selection and update of importance
functions based on the construction of Gaussian Bayesian
networks. The structure of the latter graphical model en-
ables a sequential sampling procedure that requires draw-
ing only from unidimensional conditional distributions and
leads to very efficient PMC algorithms. In order to illus-
trate the potential of the new technique we have consid-
ered the estimation of rate parameters in stochastic kinetic
models (SKMs). SKMs are multivariate systems that model
molecular interactions in biological and chemical problems.
We present some numerical results based on a simple SKM
known as predator-prey model.

1. INTRODUCTION

The problem of performing inference in high dimensional
spaces appears in many practical applications. For example,
it is of increasing interest in the biological sciences to develop
new techniques that allow for the efficient estimation of the
parameters governing the behavior of complex autoregula-
tory networks [1]. Another typical example in engineering is
the problem of multi-target tracking, which consists of the
dynamical estimation of the time-varying parameters of a set
of multiple manoeuvering targets. The main difficulty often
encountered when tackling this kind of problems is the de-
sign of numerical inference algorithms which are stable and
have guaranteed convergence in high-dimensional spaces.

A very common strategy, which has been successfully ap-
plied in a broad variety of complex problems, is the Monte
Carlo methodology. In particular, we have considered a re-
cently proposed technique known as population Monte Carlo
(PMC) [5], which is based on an iterative importance sam-
pling approach. The aim of this method is the approxima-
tion of probability distributions by way of random measures
consisting of samples and associated weights.

Although the PMC algorithm is elegant and simple to
understand, its performance depends directly on the choice
of the proposal distributions (or importance functions) that
are used to generate the samples and compute the weights.
These importance functions should be updated (i.e., im-
proved) along the iterations of the algorithm. They should
also remain simple, so that both drawing samples and com-
puting weights is numerically tractable, and, finally, they
should generate candidate samples in regions where the pos-
terior probability is large. A recently proposed approach for
the proposal update is the mixture PMC scheme [4], which
models the importance functions as mixtures of transition
kernels. However, this method does not perform any par-
titioning of the space of the variables of interest (they are
drawn jointly) and, therefore, it may be inefficient for ap-
proximating distributions in high dimensional spaces.
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As an alternative to this approach, in this paper we pro-
pose to represent the proposal functions at each iteration
as the joint density of a Gaussian Bayesian network. The
main advantage of this graphical model for our purposes is
the fact that it allows for a straightforward sampling pro-
cedure in spaces of arbitrarily high dimension. Indeed, in
the proposed scheme a topological order of the variables of
interest is designed that enables us to draw samples from
them sequentially (one variable at a time) using the con-
ditional distribution of each variable given its “ancestors”.
(This approach is often termed ancestral sampling [9]).

The new algorithm is termed GBN-PMC. It provides (a)
a simple proposal update procedure based on the selection
of a GBN structure that fits the data adequately and (b) the
ancestral sampling technique. We have particularized the
proposed method to the problem of estimating the unob-
served rate parameters of stochastic kinetic models (SKMs)
[11]. Such models describe the time evolution of the popula-
tion of a set of species or chemical molecules, which evolve ac-
cording to the mentioned set of rate parameters, and present
an autoregulatory behavior. This problem is currently of
great interest in a variety of biological and molecular prob-
lems, such as complex autoregulatory gene networks. As
a simple and intuitive example, yet physically meaningful,
we have obtained numerical results for the Lotka-Volterra
model, also known as a predator-prey model, consisting of
two interacting species related by three reactions with asso-
ciated unknown rates.

The rest of the paper is organized as follows. In Section
2, we give a formal statement of the class of problems we ad-
dress. In Section 3, the population Monte Carlo algorithm is
described. In Section 4, the formalism of Gaussian Bayesian
networks is briefly reviewed. In Section 5, the proposed algo-
rithm is introduced. In Section 6, we describe the practical
application of the proposed algorithm to the problem of esti-
mating the rates of a SKM, and present computer simulation
results. Section 7 is devoted to the conclusions.

2.

Let @ = [01,...,0k]" be a vector of K unobserved real ran-
dom variables with prior density p(0) and let y be a vector of
real random observations related to 8 by way of a conditional
probability density function (pdf) p(y|0).

In this paper we address the problem of approximating
the posterior pdf of @, denoted by p(@|y), using a random
grid of M points, {8V}, in the space of the random vector
0. With this grid, it is simple to approximate any moments
of p(Oy) (e.g., the posterior mean). However, the generation
of useful samples that represent p(f|y) adequately when K
is large is normally a very difficult task.

The main goal of this work is to devise and assess a
sampling scheme that is sequential in the space of 0, i.e.,
that draws scalar random variates 61, ...,0x one at a time
and can be used with arbitrary values of K.
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3. POPULATION MONTE CARLO

3.1 Importance sampling

The main application of statistical Monte Carlo methods is
the approximation of integrals Z(f) by means of empirical

sums ZM (f), which are of the form

7(7) = [ s@)me)as. V(1) = %Zf (69).

where f is a real, integrable function of 8, w(0) is some pdf
of interest (often termed the target density), and {8 }M,
is a collection of M Monte Carlo samples drawn from 7(8).
It is straightforward to analyze the convergence of ZM(f)
towards Z(f) [3].

However, in many practical cases it is not possible to
sample from 7(0) directly. A common approach to overcome
this difficulty is to apply an importance sampling (IS) proce-
dure [3]. The key idea is to draw the samples {8V}, from
a (simpler) proposal pdf, or importance function, ¢(0), and
then compute normalized importance weights of the form

w® ocﬂ'(B(i)) / q(G(i)), 1=1,..., M.

The integral Z(f) is then approximated by the weighted sum

IM(f) _ iw(i)f (a(i)) .

The efficiency of an IS algorithm depends heavily on the
choice of the proposal, ¢(8). However, in order to ensure the
asymptotic convergence of the approximation 7™ (f), when
M is large enough, it is sufficient to select ¢(8) such that
q(0) > 0 whenever 7(8) > 0 [3].

3.2 Population Monte Carlo algorithm

The population Monte Carlo (PMC) method [5] is an iter-
ative IS scheme that generates a sequence of proposal pdfs
qe(0), £ =0,..., L, such that every new proposal is “closer”
to the target density w(0) than the previous importance func-
tion. Such scheme demands the ability to learn about the
target m(0), given the set of particles and weights at the
(¢ — 1)-th iteration, in order to produce the new proposal
qe(0) for the ¢-th iteration. Taking this ability for granted,
the algorithm is simple and can be outlined as follows:

Iteration (¢ =0,...,L):

1. Select a proposal pdf q.().
2. Draw a collection of M i.i.d. (independent and identically
distributed) samples 037 = {9?}%1 from q,(8).
3. For each sample Béi) compute the normalized weight
wgi) o< (92“) / qe (0?)), 1=1,...,M.
In our problem, the target density is the posterior pdf of
0, ie., m(0) = p(Bly), and a straightforward way of initializ-
ing the algorithm is to use the prior as the starting proposal,
qo(0) = p(@). However, the key element of the PMC it-
eration is the proposal update mechanism. We propose to
select the importance function as the joint pdf of a Gaussian
Bayesian network that represents the conditional dependen-
cies among the 6;’s by means of Gaussian distributions and
allows for a simple sampling scheme.

4. GAUSSIAN BAYESIAN NETWORKS

The aim of this section is to show how the proposal functions
qe(0), £ = 1,...,L, can be suitably constructed from the

unweighted sample set O}, = {él(gl_)l}fvil, obtained from
oy, = {Oﬁgl,wéﬂl}gl via a resampling step, using the
formalism of Gaussian Bayesian networks (GBNs).

4.1 Bayesian networks

A Bayesian network (BN) is a probabilistic graphical model
that encodes the relationships among a set of variables of
interest © = {01,...,0k} using a directed acyclic graph
(DAG). Here, we consider the case when all the variables
01 associated with the nodes are continuous and the proba-
bilistic model of the graph is given by a joint pdf ¢(8) [9].

The parent set II;, C © of a variable 6 is the subset of
nodes in the graph such that there exists an edge from any
node 6; € Iy to ;. It is always possible to find a topological
sorting of the variables such that the parents of a node 6
have strictly lower indices, i.e., if 8; € Il then j < k.

Moreover, BNs satisfy a conditional independence prop-
erty which states that each variable is independent of its non-
descendants given its parent nodes, i.e., ¢(0k|01,...,0k_1) =
q(0x|Iy). This property allows the factorization of the joint
pdf of the BN by way of the chain-rule as the product of the
unidimensional conditional pdfs of each variable 6, namely
q(0) = TIr_, q(0x|1y), allowing for an efficient numerical
evaluation of ¢(0).

An important reason for the use of BNs as proposal func-
tions is the fact that the topological sorting of the variables
allows to sample efficiently from joint densities ¢(@) with ar-
bitrarily high dimension K with a simple procedure which
requires to draw from unidimensional densities only. This al-
gorithm is known as ancestral sampling [9] and it consists in
sampling from the unidimensional conditional distributions

q(9k|H,(:)) of 0; conditioned on the samples of the parent
variables H,(f) in the topological order k = 1,..., K. Finally,
the set of scalar samples {0,(5)}?:1 corresponds to a vector
sample 8 from the joint pdf ¢(8).

4.2 Gaussian Bayesian networks

In this work we have considered a particular kind of BNs
known as Gaussian BNs (GBN) [7], where the joint proba-
bility distribution of € is a multivariate normal distribution
q(0) = N(0; p,X) with mean vector p and positive defi-
nite covariance matrix 3. Given a topological sorting of the
variables this joint density can be factorized into a product
of univariate, independent normal conditional pdfs

k—1
CANIEY (9k; e+ Y ek (05— 1), Uz%) :

=1

where ju; is the unconditional mean of 6, o7 is the vari-
ance of 0, conditioned on values of its parents and cg,; is
a linear coeflicient reflecting the strength of the relationship
between 6; and 6. Thus, a multivariate normal distribution
is equivalent to a GBN, and the precision matrix T = X!
may be easily obtained from the GBN parameters o7 and
Ck = [Ch,--- ,ckkal]T, k=1,...,K, and viceversa.

4.3 Learning GBNs from data

A number of algorithms have been proposed in the literature
to learn the “posterior” network structure of a BN and its
parameters, as a combination of prior knowledge and a set
of observed data [7]. Such algorithms are based on a scoring
metric, that provides a quantitative assessment of the “good-
ness” of the BN, and a search procedure that explores the
(usually large) space of candidate networks and determines
the sequence of BNs to be scored.
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4.83.1 Scoring metric

A Bayesian measure of the goodness of a network structure
B is its posterior probability ¢(B|©) given an unweighted
sample set ©M from the joint density q(0). Its computation
is practically intractable even for small networks and the
joint density ¢(©™,B) = q(©6™|B)q(B) is often used as a
score. If all network structures are equally likely a priori the
joint density reduces to the likelihood ¢(©™|B). The scoring
metric of an arbitrary GBN B may be computed based on
the metric for a complete network [7].

Different DAG structures may represent the same depen-
dencies among variables, and are then said to be equivalent.
In such case, they provide equivalent factorizations of the
joint density ¢(0), thus yielding the same score [7].

4.8.2 Search procedure

Unless the number of variables is small, it is computation-
ally infeasible to search the maximizing GBN structure by
exhaustively considering all DAG patterns. For this reason,
heuristic approximate search algorithms over DAGs have
been proposed to seek highly likely structures [9].

In this work a greedy search algorithm has been consid-
ered [9]. This algorithm starts from an initial DAG structure
(e.g. the empty graph) and considers the operations of ad-
dition, removal or reversal of an edge in the graph. At each
iteration, it computes the scoring metric of every network
structure that may be obtained from the current one per-
forming a single operation, and “greedily” selects the one
that maximizes the metric. The algorithm stops when no
operation increases this score.

In combination with the scoring metric, this algorithm
enables us to 5elect the DAG structure B* that best fits the
set of data @e 1, and the associated joint pdf constitutes the
importance function g¢(0).

5. GBN-PMC ALGORITHM

In this work, we propose to represent the importance func-
tions in the PMC scheme as the joint densities of a sequence
of GBNs. The structure and parameters of the network are
adaptively adjusted along the iterations, based on a sequence

of unweighted sample sets ©M = {921 iz, £=0,...,L.

In high dimensional problems (where K is large) it is
hard to devise efficient Monte Carlo sampling methods. In-
deed, unless the likelihood function p(y|@) be very broad
(i.e., the data are very noisy), the probability of gener-
ating samples with non-negligible likelihood using a pro-
posal distribution is extremely low. In order to circumvent
this difficulty, we propose to generate a sequence of models
pe (Bly) x pe(y|0)pe(0), £ =0, ..., L, that converges to the
real posterior p (6|y) when L is large enough but are “sim-
pler” (e.g., they have broader likelihoods, broader priors or
both) for Monte Carlo approximation. If we keep approxi-
mating accurately the models py(0]y) along the iterations of
a PMC algorithm, as p,(0]y) — p(@|y) we obtain an ade-
quate Monte Carlo representation of p(@|y).

The proposed generic GBN-PMC algorithm for the esti-
mation of the hidden parameters 6 is summarized below.

Initialization (£ = 0):

1. Draw a collection of M samples, 03 =
the prior importance function qo () = p
2. Go to step 4.

PMC iteration (£ =1,...,L):
1. Resample with replacement from the weighted set

ey, = {Bgi)l, y)l M. to obtain the unweighted set

611 = (6.0},

{ (d }Zil, from
().

681

2. Apply the greedy search algorithm (Section 4.3.2) to se-
lect a GBN structure B* with high likelihood ¢(6}%,|B*)
and estimate its parameters {,uk, o}, ck}7 k=1,...,K to
construct the new proposal density g¢(0).

3. Apply the ancestral sampling algorithm to draw a collec-
tion of M samples @77 = {0(2)} 2, from ¢.(0).

4. Construct the £-th model p,(8|y) based on the set 7.

5. Compute the normalized weights for each particle By),

i=1,...,M,
De (92“ | y) De (yl 9?)) Pe (92“)

o (07") o (07")
6. EXAMPLE: A STOCHASTIC KINETIC
MODEL

In this section, the proposed GBN-PMC algorithm is ap-
plied to the problem of estimating the hidden parameters
of a simple stochastic kinetic model (SKM), known as the
predator-prey model. A SKM is a multivariate continuous-
time jump process modeling the interactions among mole-
cules, or species, that take place in chemical reaction net-
works of biochemical and cellular systems [11, 2].

(1)

6.1 Predator-prey model

The Lotka-Volterra, or predator-prey, model is a simple SKM
that describes the time evolution of two species z1 (prey) and
x2 (predator), by means of K = 3 reaction equations [2, 10]

01 .
r1 — 2z prey reproduction

T1 + x2 b, 2xy predator reproduction

To LR 1] predator death

The k-th reaction takes place stochastically according to
its instantaneous rate ax(t) = Orgi (x(¢)), where 6 > 0 is
the random rate parameter and g(-) is a continuous func-
tion of the current state of the system x(t) = [z1(t), z2(¢)] .
We denote by x1(t),z2(t) the nonnegative, integer popula-
tion of each species at time ¢. In this simple example, the
instantaneous rates are of the form

al(t) = 01$1(t), az(t) = (92$1(t)$2(t), ag(t) = (93$2(t).

The waiting time to the next reaction is exponentially
distributed with parameter ao(t) = Zle ak(t), and the
probability of each reaction type is given by ax(t)/ao(t).

We denote by x the vector containing the population of
each species at the occurrence time of each reaction in a time
interval t € [0,7], i.e., x = [x' (t1),x (t2),...,x" (tr)]",
where R is the total number of reactions occurred in the
time period of length T

Assuming that the entire vector x is observed, the
likelihood function for the rate parameter vector 8 =
[61,...,0x]" may be computed analytically, and it allows
the factorization [11]

p(x|0) = H p(x|0k) = H Gk exp {*91% /OT gk (x(1)) dt} ,

where 7 is the total number of reactions of type k occurred
in the time interval [0, T].

The structure of this likelihood function allows the selec-
tion of a conjugate prior distribution for the rate parameters,
comprising independent Gamma components, i.e.,

K

Uptgk =H

k=1

0k:7 ak7bk



where ag, b > 0 are the scale and shape parameters of each
component, respectively. Thus, the posterior distribution
p(0]x) = [Ir_, p(fx|x) may be also factorized into a set of
independent Gamma components

p(bk|x) =G <9k; ak + T, b + /OT gk (X(t))dt> ,

which indicates that, in the complete-data scenario, exact
inference may be done for each rate constant 6j, separately.
However, making inference for complex, high-dimensional
and discretely observed SKMs (where x is not fully observed)
is a challenging problem [2].

Exact stochastic simulation of generic SKMs, and
predator-prey models in particular, can be carried out by
the Gillespie algorithm [8]. This procedure allows to draw
samples from the prior pdf of the populations, p(x|@), for
arbitrarily high-dimensional SKMs.

In this work we restrict ourselves to this simple but repre-
sentative example of SKM. A generalization of the algorithm
to more complex models is straightforward given the efficient
sampling procedure and evaluation of the weights in high di-
mensional problems. An additional complexity of this model
relies is the highly dimensional auxiliar random variable x,
which makes this problem numerically difficult to tackle.

6.2 GBN-PMC algorithm for SKMs

We assume that a set of J noisy observations of the popula-
tions of both species are collected at regular time intervals
of length A, that is, y; = x; +u;, =1,...,J, where x; =
[£1(jA),z2(jA)]T and u; is a Gaussian noise component
with zero mean vector and covariance matrix o2I. We denote
the complete vector of observations as y = [y ,... ,y-J'—]-r
with dimension 2J x 1. Thus, the likelihood of the popula-
tions x is given by p (y|x) = H;Zlf\/ (v;; x5,0°1).

The goal is to estimate the posterior density p(@]y)
p(y|0)p(0), given the prior distribution p(@) and the like-
lihood p(y|@), using the GBN-PMC method. The model
construction and the computation of the weights is now par-
ticularized for this concrete application.

In this particular problem, the observations y are related
to the variables @ through the random vector x. Indeed, the
likelihood of @ has the form

p(yl6) = / PyX)p(xI0)dx = Eppo) p(yX)],  (2)

where Ej,(xjg)[] denotes expectation with respect to the pdf
in the subscript, and p(y|x,0) = p(y|x), since the observa-
tions are independent of the parameters 6 given the popula-
tion vector x.

In principle, it is possible to approximate the integral in
(2) as an average of the likelihoods p(y|x¥) of a set {xV}1_;
of exact Monte Carlo samples from the density p(x|0), drawn
using the Gillespie algorithm, that is,

pv19) = 130 (31 x)
=1

This approach, however, is computationally intractable, be-
cause it demands drawing a huge number of samples I to
obtain a useful approximation of the posterior p(y|@), since
the probability of generating a trajectory of populations x(*
similar to the observations is extremely low.

To overcome this difficulty, we propose a simple approach
based on using a standard particle filter [6] to approximate
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the posterior mean of x conditioned on y and a realization
0 of the rate parameters,

%@ = Ep(x\y,e(i))[x] = /xp (x| y,B(i)) dx.

Complete details on the implementation of the particle filter
and the approximation of X can be found in [6].

Thus, for each sample By) obtained via ancestral sam-
pling in step 3 of the GBN-PMC scheme, an approximation
of the population vector 5(21) is computed via particle filtering
and the likelihood of Eq. (2) is approximated as

p (yl 9&“) ~p (yl Xy)) :

We have considered a model update scheme of the form
pe (Bly) x pe(y|@)p(0) where the likelihood pe(y|0) is con-
structed by a clipping procedure, thus obtaining a flat like-
lihood in the region of interest. As a consequence, a large
enough set of samples obtains non negligible weights, which
allows to compute consistent Monte Carlo approximations in
high dimensional spaces.

Specifically, the model at iteration ¢ is computed from

the likelihood of the sample set ©}7 = {Géi)}f\il as
pe (v16) scmin{Z,p (v 6{") },

where the threshold 7; is computed such that the number of
samples OEZ) that satisfy p(y|5<$)) > Ty is equal to Mt < M.

The threshold 7; converges to the maximum of the like-
lihood p(y|@) as £ grows, and thus, also the model p, (y|60)
converges to p (y|@). We may define a stopping criteria based
on the value of the threshold 7; and stop iterating when it
reaches a stable value. The parameter Mr must be selected
to represent adequately the multidimensional posterior dis-
tribution pe (8]y).

The model update step 4 in the general GBN-PMC al-
gorithm requires the computation of the likelihood p(y|§c21))

for each particle BEZ), i=1,...,M. Then, the threshold 7,
must be computed and the ¢-th model p; (y|x) constructed
via the clipping procedure.

Finally, the normalized weights in (1) are of the form

wgi) o ps (y| 5(&0) p (0?’)) / q (%i)) )

6.3 Computer simulation results

We have applied the proposed GBN-PMC algorithm to the
problem of estimating the posterior pdf of the constant rate
parameters vector 6 in a simple predator-prey model. The
true vector of parameter rates which we aim to estimate has
been set to 8 = [0.5,0.0025,0.3] .

A realization of the populations x has been generated
from the prior distribution p(x|@) with initial populations
set to x(0) = [71,79] ", and a total length of T' = 40. The
observation vector y has been obtained with an observation
period A = 1 and a Gaussian noise variance ¢ = 100.

Figure 1 (left) depicts the time evolution of the true pop-
ulations of both species x, and the corresponding discrete-
time noisy observations y. The autoregulatory behavior of
the model can be clearly observed on the graph.

The parameters of the prior Gamma distribution
p(0) have been set such that the corresponding mean
and standard deviation vectors are [0.4,0.0035,0.4]7 and

[0.1,0.001,0.1]", respectively. That is, they present a bias
with respect to the true vector 8. Both the marginal prior
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Figure 1: Left: Real populations (x) and discrete-time noisy observations (y) in a predator-prey model. Middle: Approximate
posterior densities generated by the GBN-PMC algorithm. The prior and the optimal posterior (with full knowledge of x)
are also displayed for comparison. Right: Evolution of the MSE of the rate estimates.

and the optimal posterior computed in this example for 6
are shown on the central plot in Figure 1.

We have applied the proposed GBN-PMC algorithm to
the approximation of p(@]y) in this scenario. We have set
the parameters to M = 100, My = 50 and L = 10.

We have observed that, given discrete-time and noisy ob-
servations of the process x, the rate parameters present pos-
terior dependencies, which have been modeled in terms of a
GBN. In this example it is computationally feasible to eval-
uate the likelihood ¢(©}'|B) of every possible GBN struc-

ture B given a set of unweighted samples ©21, since, for
K = 3, there exist only 11 equivalence classes of DAGs.
The network structure that maximizes the metric at each
iteration £ =0, ..., L is a complete network, and we have ar-
bitrarily selected the DAG structure with the factorization
qe(0) = qe(01)qe(02101)qe(63]61, 02).

Figure 1 (middle) displays the evolution of the marginal
proposal densities of the rate parameter 6;. It can be ob-
served that it smoothly converges to the optimum posterior
in a low number of iterations (L = 10). The difference of the
final estimate with respect to the optimal posterior is due to
the discrete-time and noisy nature of the observations y (the
optimal posterior corresponds to the case of complete data,
i.e., x is fully observed). The results obtained for the rest of
the parameters are very similar and have been omitted.

We asses the merit of an unweighted sample set {67,(;) M,
as an estimator of the parameter 6, by means of the mean
square error MSEy = - Zi]\i1(91(:) —01)% kE=1,2,3.

Figure 1 (right) shows the evolution of the MSE of each
parameter, as well as the corresponding lower bound given
by the optimal marginal posterior. It can be seen that it
smoothly decreases until a final value close to the lower
bound, even with L = 10 iterations. The convergence of
the algorithm can be adjusted by tuning M and Mr.

7. CONCLUSIONS

We have addressed the problem of approximating posterior
probability distributions in spaces of potentially high dimen-
sion. We have proposed a novel PMC scheme, termed GBN-
PMC, which is based on a representation of the proposal
distributions as the joint density of a Gaussian Bayesian net-
work. This graphical model provides a straightforward sam-
pling procedure and a factorization of the joint density that
enables an efficient evaluation in high-dimensional spaces. In
order to illustrate the application of the proposed technique,
we have presented numerical results obtained in the estima-
tion of the rate parameters of a simple stochastic kinetic
model, known as predator-prey model.
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