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ABSTRACT
Independent Subspace Analysis (ISA) denotes the task of linearly
separating multivariate observations into statistically independent
multi-dimensional sources, where dependencies only exist within
these subspaces but not between them. So far ISA algorithms have
mostly been described in the context of known group sizes. Here, we
extend a previously proposed ISA algorithm based on joint block di-
agonalization of 4-th order cumulant matrices to separate subspaces
of unknown sizes. Further automated interpretation of the demixed
sources then requires a means of recovering the subspace structure
within them, and we propose two distinct methods for this. We then
apply the method to a novel application field, namely clustering of
metabolites, which seems to be well-fit to the ISA model. We are
able to successfully identify dependencies between metabolites that
could not be recovered using conventional methods.

1. INTRODUCTION

If S is an independent, real d-dimensional random vector, Indepen-
dent Component Analysis (ICA) [2] denotes the task of recovering
S given only mixtures X := AS (where A is in Gl(d), the invert-
ible d× d matrices with entries in R) and efficient algorithms are
available solving this task under slight approximations [1, 9] (up to
the obvious indeterminacies of permutation and scaling). However,
an arbitrary random vector X in general does not need to admit such
a decomposition. Independent Subspace Analysis (ISA) general-
izes this model by assuming no longer full independence of S (i.e.
independence between all components of S), but instead allowing
some dependencies within S. The components of S that share some
dependencies are called the subspaces of S, the indeterminacies
generalize to permutation of whole subspaces and arbitrary choice
of basis within the single subspaces, and the task then is recovery
of S up to these indeterminacies. Such a decomposition always ex-
ists, and if the subspaces are irreducible (i.e. they cannot be further
decomposed) it is unique [7].

Recently, an algorithmic approach for ISA based on the ideas of
the well known JADE approach for ICA was discussed [18]. There
the idea in JADE of minimizing the cross-dependencies in the 4-th
order cumulant tensor and then performing joint diagonalization of a
set of matrices reflecting the dependency structure was generalized
to Joint Block Diagonalization (JBD), which was estimated via an
ad-hoc algorithm. This empirical approach performed an approxima-
tion of JBD via Joint Diagonalization of the symmetrized cumulant
matrices, which was observed to give correct recoveries apart from a
final permutation stage.

We present a refined algorithmic approach to this task: Given
a random vector X, we will exploit the 4-th order information con-
tained in it and algorithmically solve the ISA task by JBD of a set of
so called (4-th order) cumulant matrices of X using a probabilistic
JBD-algorithm [12] that has been used successfully in the context
of ICA [6, 13] After this, we will estimate the subspace structure of
the recovered estimation of S. Due to the inherent noise in the data,
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Figure 1: Evaluation of the two block recovery algorithms HYDE
and DEEP, performed on a (2+2+2)-dimensional data set consist-
ing of the letters A, B and C, similar to [18]. Plotted is number of
samples vs. recovery rate.

the algorithms solving these tasks have to allow a certain fuzziness
of the input data, and both steps, JBD and subspace recovery, allow
adjusting of this fuzziness via threshold parameters.

2. INDEPENDENT SUBSPACE ANALYSIS VIA JOINT
BLOCK DIAGONALIZATION

We briefly repeat the formal definition of the ISA Model and explain
why it can be solved via Joint Block Diagonalization.

2.1 The ISA model
Let S be a d-dimensional real-valued random vector admitting a
decomposition S = (S1, . . . ,SN) into independent groups, i.e. for
every 1 ≤ i ≤ N, the group Si is independent from the rest, where
we make no assumptions on the subspace sizes dim(Si). Assume
now an A ∈ Gl(d) and let X := AS. In this situation, ISA denotes
the task of recovering the decomposition (S1, . . . ,SN) given only X.
Obviously recovery of the components Si is at most possible up to
permutation of whole blocks and basis changes within the subspaces.
If the subspaces Si additionally are irreducible, this decomposition is
unique up to these two indeterminacies [7]. It is easy to see that such
a decomposition always exists (if we allow the trivial decomposition
into a single block, if S itself already is irreducible).

2.2 Joint Block Diagonalization
A concise definition of joint block diagonality can be given as fol-
lows: Assume an integer d and an ordered set of positive integers
k := {1 = k1 < · · ·< kN+1 = d +1}. Then the k-block mask is the
d×d matrix B defined entry-wise such that bi j = 1 if kl ≤ i, j < kl+1
for some integer 1 ≤ l ≤ N and bi j = 0 otherwise. A d×d matrix
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M is B-diagonal, if bi jmi j = mi j for every 1≤ i, j≤ d. A set of ma-
trices M := {M1, . . . ,Mn} is B-diagonal, if every Mk (1≤ k ≤ n)
is, and it is jointly B-diagonalizable if there is some orthogonal
A such that AMA> is jointly B-diagonal. If B 6= B′ both are
block masks and bi j ≥ b′i j for every 1 ≤ i, j ≤ d, then the block
mask B′ is finer than B. A set of d× d matrices M is minimally
B-diagonalizable if it is B-diagonalizable and if there is no block
mask B′ finer than B such that M is B′-diagonalizable. If M is
jointly B-diagonal, we say that the i-th and the j-th block (where
1 ≤ i < j ≤ N) of M are equivalent if there is some orthogonal T

such that TM(i)T> = M( j) for every M ∈M, where M(l) is the
l-th block of M. It should be noted that this definition coincides
exactly with the intuition of joint block diagonality.

Given a set of d×d matrices M := {M1, . . . ,Mn}, Joint Block
Diagonalization (JBD) is the task of finding an orthogonal matrix A
such that AMA> =: M′ =: {M′

1, . . . ,M
′
n} is minimally B-block

diagonal for some block mask B. It it known that a set M yields a
unique joint block diagonalizer A, as long as in the minimally block
diagonal set M′ no two blocks are equivalent [19].

2.3 Quadricovariances
Generalizing the JADE approach to solve not the ICA problem but
ISA, we restrict our analysis to only 4-th order information and
w.l.o.g., we assume S to be centered. In this case the entries of the
so-called 4-th order cumulant tensor can be written as

cum(Si,S j,Sk,Sl) = E{SiS jSkSl}−E{SiS j}E{SkSl}−
E{SiSk}E{S jSl}−E{SiSl}E{S jSk}

(for 1≤ i, j,k, l ≤ d), and this expression is 0 whenever at least two
of the arguments are statistically independent (within the subspace
spanned by Si,S j,Sk and S j). Based on this, we look at the so-
called d×d quadricovariances (or cumulant matrices) QS(M) of
S. Here the parameter M also is a d×d matrix and for a given M,
the according cumulant matrix is defined entrywise as QS(M)i j =
∑

d
k,l cum(Si,S j,Sk,Sl)mkl . For white S, the quadricovariance of S

at M can be written as

QS(M) = E{SS>(S>MS)}−

E{S>MS}− (M+M>)

and if A is an m× d matrix with orthogonal rows of unit norm,
the cumulant matrices of AS are QAS(M) = AQS(A>MA)A>.
If Si and S j are statistically independent, every cumulant in the
entrywise definition of QS is 0, so in this case the (i, j)-th entry
of QS(.) always is 0. By assumption, S = (S1, . . . ,SN) where
dependencies only exist within subspaces Si, so there is some block
mask B defined by the sizes dim(Si) of the subspaces such that
every matrix QS(.) is B-diagonal. We here additionally assume that
the set {QS(M)|M∈Mat(d×d)}, where Mat(d×d) are the d×d
matrices with entries in R admits no finer block diagonalization.

Assume now that we are only given X = AS. Performing
the usual whitening step of the observed sources and assuming
decorrelation of the single source subspaces, we may assume that A
is orthogonal. Due to the orthogonality of A,

A>QX(M)A = QS(A>MA)

for any M ∈Mat(d×d), where on the left hand side, the matrices
QX(M) are known, and the right hand side is B-diagonal. As this
block structure is minimal for the set QS(.), our task reduces to JBD
of the set QX(.). As for the set of of matrices M where we will
evaluate QX(.), we here follow the choice from JADE letting this
set be {Mi j|1≤ i≤ j ≤ d} where

Mii = eie
>
i (1≤ i≤ d)

Mi j = (eie
>
j )/
√

2 (1≤ i < j ≤ d) .
(1)

3. BLOCK RECOVERY

The algorithm from [13] performs the JBD task of a set M by con-
struction of a single symmetric matrix M0 which has the property
that a matrix diagonalizing M0 already performs JBD of M. Due
to this approach, the algorithm performs JBD without actually hav-
ing to estimate any subspace sizes. However, for further automated
processing of the subspaces, recovery of the block structure is essen-
tial, which we now estimate from the recovered data S. We again
restrict ourselves to the use of of 4-th order information. As before
we assume that not all cumulants cum(Si,S j, ., .) vanish if Si and
S j lie in the same subspace. In the theoretical limit case of perfect
information and in the absence of noise, we could simply recover the
dependency graph of S by gathering every pair of nodes i and j into
a common subspace if cum(Si,S j, ., .) 6≡ 0, but under the assumption
of noise (both due to the availability of only a finite number of sam-
ples, and noise inherent in the system) this would result in just one
large d dimensional dependency block, which clearly is not desired.

A simple approach to recover the block structure of a matrix M
is to read it as the adjacency matrix of a graph G, then recovery of the
blocks of M is equivalent to recovery of the connected components
of G and efficient algorithms are available achieving this task [16].
We present two approaches that try to capture the dependencies
within within S as a function of the 4-th order cumulant tensor of
S and some real-valued threshold ε and then collect all dependent
components together, marking these as a recovered subspace. Note
that this problem can be seen as a community detection problem,
which is a hot topic in the field of graph theory.

3.1 HYDE: Hypergraph dependency estimation
For the first approach, we view the components of S as the nodes of
a hypergraph H, where every hyperedge connects at most 4 nodes.
The weight of the hyperedge connecting the i-th, j-th, k-th and the
l-th node is estimated as |cum(Si,S j,Sk,Sl)|, and after choosing
a threshold ε , we remove all hyperedges with weight lower than
ε , resulting in a in general no longer fully connected hypergraph
Hprune. Collapsing Hprune then into a symmetric, unweighted (stan-
dard) graph G with d nodes by defining that nodes i and j of G are
connected iff nodes i and j of Hprune are via at least one hyperedge,
we now simply collect the components of G, telling us which com-
ponents Si of the recoveries S are connected and thus belong to a
single subspace. We call this approach “HYDE” (HYpergraph based
Dependency Estimation), and accordingly denote the threshold ε

used in the pruning step εHY DE from now on.

3.2 DEEP: Pairwise dependency estimation
For the second approach, we want to employ a purely pairwise mea-
sure of dependence on the components, i.e. we seek a dependency
matrix ∆ where the (i, j)-th entry reveals something about the de-
pendency between Si and S j, larger entries corresponding to larger
dependencies. For this we exploit all pairwise information in the
cumulant tensor by setting

∆i j = |cum(Si,Si,Si,S j)|+ |cum(Si,Si,S j,S j)|
+ |cum(Si,S j,S j,S j)| .

Reading a thresholded (by some ε) version of ∆ as the adjacency
matrix of a graph, we again recover the block structure of S by
extraction of the connected components of this graph. We call this
approach “DEEP” (DEpendency Estimation in Pairs), and denote
the threshold εDEEP from now on.

3.3 Block parameter scanning
For a fixed S, the set of all possible block structures returned by
both HYDE and DEEP for all possible values of the parameters
εHY DE and εDEEP is not ordered. While both HYDE and DEEP
estimate the finest block structure for small enough values of εHY DE
and εDEEP, and both estimate the coarsest block structure for large
enough values of the thresholds, the two approaches can return
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Figure 2: Workflow for the application our subspace JADE variant to metabolomics data. A. We used data from a German population cohort
[15], containing 202 measured metabolites from 100 study participants. B. After application of the algorithm and subsequent metabolite
selection, we obtained 10 groups containing subsets of the overall metabolite panel. C. For each metabolite, a single major metabolic
pathway is annotated, describing its overall position on the metabolic map (network graphic from KEGG PATHWAY website [8]). D. Using
hypergeometric enrichment analysis we assessed whether our recovered groups specifically enrich metabolites from a given class.

distinct block structures for intermediate values. For example, if
d = 3, HYDE might group the first two components into a single
subspace for intermediate threshold values, while DEEP might group
the last two components into a single subspace. However, both of
the two approaches themselves return a totally ordered set of block
structures for the possible set of allowed thresholds R+: For any two
values ε1 < ε2, the structure returned by HYDE (resp. DEEP) for
a threshold of εHY DE = ε2 (resp. εDEEP) will be at most as fine as
the structure returned by it when choosing the threshold εHY DE = ε1
(resp. εDEEP). Continuously changing the respective threshold from
an arbitrarily small value to a large enough value is guaranteed to
return all possible block structure in order. This allows the use of
either method to find a block structure with a given fixed number of
subspaces.

3.4 Simulations

In order to evaluate the validity of the approaches to block recovery,
we generated 3 independent 2-dimensional signals, corresponding
two the three letters A, B and C respectively, along the lines of [18],
giving us in total a 6-dimensional (unmixed) signal. We picked
N = 50 t samples from this signal for every t ∈ {1, . . . ,100}, calcu-
lated the sample cumulants from these samples and used HYDE and
DEEP to estimate the subspaces in the signal, not selecting specific
thresholds εHY DE and εDEEP, but instead fixing the number of sub-
spaces to be found to 3. We repeated this for k = 1000 runs for every
choice of N. Figure 1 shows the results of these batch runs, where
the x-axis depicts the number of samples selected, and the y-axis
depicts the average percentage of runs where the three subspaces
selected correspond to the correct components {(1,2),(3,4),(5,6)}.
For N = 50, HYDE (resp. DEEP) estimates the correct subspaces
only in 1.5% (resp. 3.3%) of the trials, only slightly better than pure
guessing (which would select the correct subspaces with p = 1/90),
but rising numbers of samples lead to higher recovery rates, with
both algorithms recovering the subspaces correctly in at least 90%
of the trials for N ≥ 3000.

4. APPLICATION

In the following we will apply our subspace variant of JADE to a
large-scale metabolomics data set. The approach follows the ideas of

[17] where ICA was successfully used for a similar task, however due
to lack of space we cannot go into the same level of detail and have
to restrict out analysis to comparison with a single method, for which
we chose k-means clustering. Metabolomics is a newly arising field
aiming at the measurement of all metabolites, that is small metabolic
compounds like sugars, fatty acids and amino acids, in a given
biosample [5]. Cellular metabolism is driven by a set of strongly
interconnected and overlapping metabolic pathways [3, 11]. Our
approach now attempts to recover independent metabolite profiles,
each of which stands for a separate “direction” or cellular process in
metabolic space, and whose mixture finally gives rise to the measured
metabolite concentration data. We first describe the steps taken and
the results gained, before discussion the choice of parameters.

4.1 Description and analysis of metabolite data set

We used fasting blood serum data for 100 participants from the
KORA F3 population cohort with 202 metabolites measured by
ESI-MS/MS [15] (Figure 2A). The metabolite panel contains sub-
stances from various parts of the metabolism, including central
energy metabolism, lipid synthesis and degradation, amino acid
metabolism, xenobiotics pathways (e.g. for caffeine metabolism)
and so on. For each metabolite in the dataset, one of the follow-
ing 8 major metabolic pathways is annotated: Carbohydrate, Lipid,
Nucleotide, Amino acid, Xenobiotics, Energy, Peptide and Cofac-
tors and vitamins. The dataset was logarithmized in order to obtain
roughly normally distributed metabolite concentrations (cf. [10]).

Every test subject corresponds to an input dimension of the data,
while every metabolite corresponds to a single sample. In order
to reduce the work load, we first performed PCA of the data set
to the first 30 dimensions (accounting for 98.7% of the observed
variance). We then calculated the sample cumulant matrices for the
data set, evaluated for the matrices as in (1). Joint Block Diago-
nalization of this set then was performed using the JBD algorithm
introduced in [13], where the non-trivial choice of the error control-
ling parameter εJBD was performed heuristically by setting it within
the first larger gap in the eigenvalue spectrum (Figure 3A). Manual
inspection (Figure 3B) suggested we fix the number of groups to
at most 15. This coincided with [17], where the number of sources
was fixed to 10, which we used for the number of groups. We now
have a combination of 10 groups S1, . . . ,S10 of mixtures of study
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Figure 3: A. Eigenvalues of JBD matrix, inset showing first gap
around εJBD = 8000. B. Development of the number of groups with
respect to the HYDE epsilon parameter. C. Number of components
in the five largest groups as a function of the number of groups. D.
Heatmap displaying the fraction of enriched groups (between 0=no
enriched groups, and 1=all groups are enriched), for ranging values
of the z-score cutoff and the number of groups chosen.

Figure 4: A. Cost value for 106 runs of the k-means algorithm,
plotted against the number of enriched groups in each clustering. The
best solution was obtained for a clustering with five enriched groups.
B. Enrichment matrix for the best solution. Three groups enrich
the lipid class, and two groups enrich amino acids and xenobiotics,
respectively.

participants of arbitrary dimension (30 in total) and 202 metabolites,
each showing some level of expression in all of the subspaces. To
obtain a binary assignment of whether a metabolite “belongs” to a
subspace or not, we calculated the L2 norm for each column (i.e.
each metabolite) within each subspace Sk, and applied an absolute
cutoff of 2 (Figure 2B). Next, we assessed whether the recovered
metabolite groups are reasonable from a biological point-of-view,
by performing a hypergeometric enrichment test [4] with α = 0.05
for the 8 annotated pathways in each group. High enrichment val-
ues indicate good overlaps of our subspaces and known biological
pathways, see also [17].

4.2 Results

In total, 7 of the 10 recovered groups display significant enrichments
for one of the metabolite classes. We found that three metabolic
pathways Lipid, Cofactors and vitamins and Carbohydrate are specif-
ically enriched in groups 2, 4 and 10, respectively (Figure 2C+D).
This indicates for distinct intracellular regulations of these major
parts of the metabolism. For instance, one independent subspace
contains a significantly high number of metabolites belonging to
the lipid class, indicating that a large number of lipid metabolites
are coregulated with respect to metabolic pathway activity. Inter-
estingly, four groups enrich xenobiotic metabolism, indicating that
this represents a separated part of metabolism with varying overlap-
ping effects. We detected no enrichment for the classes Nucleotide,
Amino acid, Energy and Peptide, which is most likely an effect of
the ubiquitous roles of the metabolic pathways. For example, since
energy metabolism takes place in many reactions throughout the
metabolic map, it cannot be expected to show a specific enrichment
in one of the recovered groups in our data.

4.3 Choice of parameters

For our primary analysis we chose a set of ad-hoc parameters for
the different parts of the method. We first evaluate how changes in
these parameters affect the results, with respect to both the overall
results structure and the biologically-driven quality assessment. The
employed JBD algorithm requires an input parameter εJBD declaring
a threshold up to which eigenvalues are to be seen numerically
identical to 0. The first 350 eigenvalues change very gradually,
making it hard to choose a cut-off within these, but there is a more
abrupt increase after the 360-th eigenvalue, so we select εJBD such
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that it includes only the points up to here (Figure 3A). Although
DEEP slightly outperformed HYDE on our toy data set (see Fig. 1),
comparison of the final output with known pathways (the enrichment
step) revealed that HYDE performed better on the real data set,
and we therefore restrict presentation of the results to this analysis.
By ranging the value of εHY DE , we are able to obtain any desired
granularity in the grouping, from one large group containing all
sources up to singleton groups (Figure 3B), where the latter case
corresponds to regular ICA-alike grouping. Inspecting how the size
of each recovered group changes with the number of groups chosen
allows us to estimate the general subspace structure in the data. In
our dataset, multiple groups containing more than one component
emerge if we choose 16 or more groups to be recovered (Figure 3C).
Finally, we investigated how the z-score cutoff (used to obtain the
binary metabolite assignment from the original source matrix) and
the number of groups affect metabolic class enrichment (Figure 3D).
The somewhat arbitrary choice of 10 groups turned out to be very
close to the optimum in the investigated value range (which lies at a
z-score cutoff of 2 with 11 groups).

4.4 Comparison with conventional clustering

In order to further assess the quality of our approach and underscore
its novelty, we compared our results to the well-established k-means
clustering method with k=10. Since k-means inherently runs into
local minima during cluster centroid optimization, we repeated the
algorithm 106 times. The best solution, i.e. the lowest cost, was
achieved for a clustering that contained a total of 5 groups enriched
for one metabolic pathway class (Figure 4A). Inspecting this best
solution, we found that the lipid class is enriched by three groups,
and the amino acid and xenobiotics classes are enriched by the other
two groups (Figure 4B). We point out that this differs from the re-
sults we obtained from the independent subspace analysis, where
only two rather localized parts of metabolism (lipid and xenobiotics
metabolism) pop up and, furthermore, the metabolically very hetero-
geneous amino acid pathway appears enriched. This finding stresses
that our ISA approach detects biologically reasonable signals that
could not be uncovered by simple clustering approaches.

5. CONCLUSION

We have introduced two approaches to recover subspace sizes within
a multivariate data set, demonstrating the validity of the approach on
toy data. In an ISA approach, the algorithm was successfully applied
to a real world data set that was previously separated via a subspace
variant of JADE. We have demonstrated that our combination of
algorithms recovers generally reasonable sets of metabolites from a
large-scale metabolomics dataset.

On the theoretical side, more sophisticated cluster detection al-
gorithms may result in further improvements of these results. From
a data interpretation point of view, the next steps in this research
include a closer inspection of the actual groups beyond simple enrich-
ment analysis, and biological interpretation of why certain metabo-
lites are grouped in the independent mixture model. Comparisons
with not only k-means, but other approaches from [17] and other
ISA algorithms (e.g. [14]) are a step in yet a further direction.
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