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ABSTRACT

In this work we study various methods for low bit rate encod-
ing of long subvectors of transform coefficients from speech
and audio codecs. Given the data characteristics, we pro-
pose a lattice based method that takes better into account
the sparsity of the signal. We also propose two generic lat-
tice encoding techniques addressing the encoding efficiency
when encoding several lattice codevectors together and com-
putational complexity of the lattice codebook nearest neigh-
bor search. We examine as well the effect of different core
codecs for speech and audio on the differential data charac-
teristics and how the input signal type influences the coding
efficiency of the considered methods.

1. INTRODUCTION

Encoding long transform coefficients is a common challenge
for coding applications such as speech, audio, image, video
coders. In the context of a large information amount to be
encoded and transmitted, the low bit rate encoding is a fun-
damental aspect. Usually this data appears under the form
of long vectors that need to be encoded at a fixed bit rate
per frame or allowing small variations around an average bit
rate value per frame. It can correspond directly to transform
coefficients of the signal or to transform coefficients of a dif-
ferential layer. The differential layer is usually the difference
between the original signal and the reconstructed signal cor-
responding to a lower bit rate.

In [2] only parts of the long vector were encoded with
non-null codevectors. Golay codewords, in addition to sev-
eral outlier components, were used to encode the more sig-
nificant part of the vector. The Golay codewords allowed
only 0 and +/-1 amplitudes and only the outlier components
added some more flexibility in the amplitude values, choice
justified by the low bit rate argument. Alternatively, in this
work we propose to use lattice codevectors, which allow for
a broader domain of sample amplitudes. Lattice codewords
will thus be used for a couple of selected subvectors and the
higher bit rate range issued from the amplitudes choice will
be compensated through variable bit rate coding, while keep-
ing a constant bit rate for the long vector.

Lattice codewords have already been used in state of the
art speech and audio coders [3], [4], [8]. We will also intro-
duce in the present work two lattice quantization related tech-
niques that improve the coding efficiency on one hand, and
reduce the nearest neighbor search complexity on the other
hand. Results of the two techniques inserted in the lattice
entropy coding scheme will be presented for different data
types.

The paper is structured as follows: after the introduction,
the overall entropy lattice based encoding method is pre-
sented and the techniques addressing the coding efficiency
when encoding several lattice codevectors at once and the

low complexity nearest neighbor search are detailed. Ex-
perimental results with various artificial and real speech and
audio transform data for several encoding methods are pre-
sented and compared.

2. METHOD DESCRIPTION

We propose a generic method for encoding long vectors at
bit rates within 0.4-0.8 bits per sample (bps). By long vec-
tors we refer to vectors with hundreds of components. Con-
sider that NB bits are available for encoding a long vector of
length N. The long vector is scaled by a scaling factor and
divided into D-dimensional sub-vectors. Each sub-vector is
quantized with a lattice quantizer. The information relative
to the sub-vectors that are quantized to null vectors is rep-
resented by means of a binary string signaling the null sub-
vectors. The rest of the bit rate is used for information related
to the lattice codevectors. The lattice quantizer is considered
as being a union of leader classes [5]. The number of bits
to encode a non-null lattice codevector from a leader class is
given by the sum between the number of bits to encode one
codevector from the class and the number of bits to encode
the index of the considered leader class [10]. An entropy
code is used to encode the leader class index.

The encoding procedure has the following steps:

1. Estimate the overall gain based on the subvector energy
distribution.

2. The vector is split in 10 dimensional subvectors which
are to be lattice quantized. A set of leader vectors from
the D+

10 lattice is considered for quantization.

3. The number of bits necessary for encoding is computed,
knowing that the following entities are encoded:

(a) Position of null subvectors

(b) Indexes of leader vectors for each non-null subvector

(c) Indexes of the lattice codevectors within the corre-
sponding leader class for the non-null sub-vectors

As such, the method does not guarantee that the number
of bits used is exactly NB or even that it is less than NB. Two
cases can be differentiated here: when the number of bits is
larger than the available number of bits and when the number
of bits is lower than the available number of bits.

In case the number of bits is larger than allowed, a
straightforward approach would be to define an order of the
sub-vectors and to set to zero the sub-vectors for which there
are not enough bits to encode the info relative to their cor-
responding lattice codevector and leader class. Even though
the complexity of such an approach is reduced, a better and
not much more complex way to gracefully degrade the qual-
ity of the quantization, is to use for some of the sub-vectors
leader classes requiring less bits. During the search of the
nearest neighbor for a given input vector, the distortion for
all the leader classes is evaluated anyway, therefore it is pos-
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Sub- Rate-distortion points
vector R D R D R D
SV1 R1,1 D1,1 R1,... D1,... R1,N1

D1,N1

SV2 R2,1 D2,1 R2,... D2,... R2,N2
D2,N2

. . . . . . . . . . . . . . . . . . . . .
SVn Rn,1 Dn,1 Rn,... Dn,... Rn,Nn Dn,Nn

Table 1: Ordered rate-distortion points.

sible to construct a table with rate-distortion points like in
Table 1. The distortion values for the considered input sub-
vector SVi and the number of bits for each leader class are
stored as Di, j and Ri, j respectively.

For each sub vector, the rate distortion points are sorted
in increasing order of the bitrate, such that the distortion of
two successive points is decreasing. In other words if, for a
point of higher bitrate, the distortion increases or stays the
same with respect to the previous point in the list, the higher
rate point is eliminated. Within this ordered list of points a
gradient based search is performed starting from the lowest
distortion, such that the available number of bits is not ex-
ceeded.

The gradient search is summarized by the following
pseudo-code:

For i=1:n
k(i) = Ni

End For
While (1)

For i = 1:n
Grad(i) = (Ri,k(i) -Ri,(k(i)-1))/

(Di,(k(i)-1) - Di,k(i)));
End For
i* = arg(max(Grad));
If k(i*) == 0

Update bits_pos;
End If
R = R - Ri*, k(i*) + Ri*,(k(i*)-1);
k(i*) = k(i*)-1;
If R+bits_pos < NB Stop, Output k

End While

The general idea behind the algorithm above is that the
selection of the subvector for which the bitrate is reduced is
made such that the overall bit rate reduction over the objec-
tive quality loss (distortion increase) is maximized. In other
words, the question is what is the way to reduce as much bi-
trate at once, while having the less distortion increase. The
number of bits value that is checked against NB consists of
the number of bits to encode the position of the significant
sub-vectors, bits pos and the number of bits to encode the
leader class index and the lattice codevector index within the
class, R.

In the second case, if the resulting number of bits is lower
than NB one approach can be to change the initial scaling
factor and redo the encoding. In a lower complexity case, the
encoding can be left as it is. This is the approach taken in the
experimental part.

2.1 Encoding the position of the null sub vectors

A binary string is formed with zero signaling a null sub vec-
tor and one a non-null subvector. A combined approach con-
sisting of Huffman coding trained for the first order entropy
and a run-length coded with Golomb Rice coding is used.
In the run-length approach, if the last group of subvectors
consists of null sub-vectors, the corresponding run can be
omitted.

2.2 Encoding the significant sub vectors

The significant sub vectors, i.e. those that are encoded by
a non null code vector, are represented by the leader vector
index and the index of the lattice code vector. The leader vec-
tors are ordered in decreasing order of probability of occur-
rence which allows for a very complexity efficient encoding
of the leader index through Golomb Rice encoding of fixed
parameter. Since the first part of the vector is most energetic
and uses leaders of higher indexes and the second part of the
vector contains lower leader indexes, two regions are defined
in the vector containing the leader vector indexes and they
are encoded with different fixed Golomb Rice parameters.

2.3 Low complexity nearest neighbor search

The lattice codebooks have inherently a lower complexity
search procedure than the unstructured vector quantizers.
We propose to reduce further the nearest neighbor (NN)
search complexity for lattice codebooks expressed as unions
of leader classes by combining the triangle inequality philos-
ophy with the search on leaders [1].

The general use of the triangle inequality for fast search
in a non-structured codebook is sketched in the following
paragraph.

Consider x, the input point for which the nearest neigh-
bor should be found in the codebook C. In a general full
search procedure for a non structured codebook, the distor-
tion between the input and each codevector from the code-
book should be evaluated and the codevector having the low-
est distortion is chosen as nearest neighbor. If the current
codevector to calculate the distortion for is c j and the best
codevector so far is ci the triangle inequality states that:

|‖ci− x‖−‖c j− ci‖| ≤ ‖c j− x‖ ≤ ‖ci− x‖+‖c j− ci‖ (1)

Consequently if

|‖c j− ci‖−‖ci− x‖| ≥ ‖ci− x‖ (2)

there is no need to calculate ‖c j−x‖ because it will be larger
than the current best distortion. The test from Equation 2
needs the distances between each two codevectors. These
distances can be precomputed and stored.

This being the general idea of the fast NN search based
on the triangle inequality, it can be applied to a codebook
formed as a union of leader classes. In this case the distortion
between the input and the nearest neighbor from each leader
class is computed by sorting the input vector and calculating
the distortion between the sorted input vector and the leader
vector of the considered leader class. If used as such, the fast
search based on the triangle inequality condition would need
the distances between any two codevectors from the lattice
codebook to be precomputed and stored. The main idea is
that only the distances between the leader vectors from each
leader class two by two need to be precomputed and stored
which reduces the number of vectors to be considered by a
factor larger than 10. For instance for bitrate 1 bit per sam-
ple and vector dimension 10 there are 1024 lattice codevec-
tors which can be covered typically [1] by less than hundred
leader vectors. For higher dimensions the reduction factor
is even larger. The fact that only the leader vectors should
be considered when storing the paired distances comes from
the fact that for each leader class the sorted input vectors are
compared with the leader vectors.
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After performing the NN search for each subvector from
the long vector, the indexing of the lattice codevectors within
the leader classes is performed using a binomial enumeration
approach [6].

2.4 Encoding efficiency improvement

To counteract the fact that the lattice leader classes are not
exact power of two, all the indexes, Ii, i = 0 : n−1 of the lat-
tice codevectors corresponding to significant subvectors can
be encoded in the same composed index

I = I0 +N0I1 +N0N1I2 + ...+N0...Nn−2In−1.

Ni, i = 0,n− 1 are the number of codevectors in each leader
class corresponding to the significant subvectors, and Ii are
the corresponding codevector indexes. There are n signifi-
cant subvectors in the long subvector.

The gain in bitrate comes from the difference

∑
i

⌈log2Ni⌉−⌈∑
i

log2Ni⌉.

3. EXPERIMENTAL RESULTS

In addition to the method proposed in this work, two more
methods have been tested. The first one is using lattice quan-
tizers of dimension 8 and it is based on the Voronoi extension
of the rotated lattice E8 [7], RE8. The second one is using bi-
nary Golay codes [2]. We will briefly describe the methods
here.

3.1 Lattice RE8 based coding

Long input vectors x = [x1 . . .xN ] with N real valued en-
tries need to be encoded at a given bit rate. The long vector
is divided into 8-dimensional subvectors. Each subvector is
quantized [7] in the lattice RE8 and represented as belong-
ing to one of the predefined finite lattice codebooks or to the
Voronoi extension of one of the predefined lattice codebooks.
For each sub-vector the index of the codebook or extension
is sent together with the lattice codevector index within that
codebook.

3.2 Golay code based coding

Long input vectors x = [x1 . . .xN ] with N real valued en-
tries need to be encoded at a given bit rate. The quantiza-
tion is performed in two stages [2]. In the first stage some
entries of the vector are identified as outliers and they are
quantized and transmitted together with their number, no,
and their locations in the vector. In the second stage the
remaining entries of x are grouped as nb = ⌊(N − no)/L⌋
subvectors of length L. Some of the subvectors are encoded
as full zero vectors, while the rest (e.g., a generic subvector
z = [z1, . . . ,zL]

T ), are encoded using the following elements:
(1) a Golay code word c∈ G23 for conveying the significance
information (ci = 0 signaling that zi is quantized to zero); (2)
the signs for all significant entries (for all i for which ci = 1 a
bit encodes sign(zi)); and (3) an overall gain to be used with
all quantized values in x during the reconstruction process.
A mask {t1, . . . ,tnb} of nb bits specifies which of the subvec-
tors are encoded as full-zeros, and which of them are vector
quantized.
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Figure 1: Example histogram of the experimental data.

3.3 New method

The lattice codebook is composed of the first 32 leader vec-
tors of the pyramidal truncation of the lattice D+

10. A pyra-
midal lattice truncation contains all the lattice points whose
ℓ1 norm is less or equal to a given value. When using the
triangle inequality based search method and the null vector
as reference for the condition 2, the complexity is reduced
from 1.325WMOPS (weighted milion operations per second
- ITU-T Software Tool Library 2009 [9]) to 0.576 WMOPS.
Updating the reference point to the current best reduces fur-
ther the search complexity, but for the considered scenario,
not only the nearest neighbor was needed, but also several
close to nearest codevectors in order to adapt to the allowed
number of bits.

Overall the complexity of the resulting method is 1.4
WMOPS compared to the 1.6 WMOPS for the RE8 based
method and 4.8 WMOPS for the Golay based method.

The use of the composed index, I gives an average SNR
(signal to noise ratio) increase of 0.1dB.

3.4 Numerical results

We have considered differential MDCT transform data with
respect to AMR-WB codec. Wideband speech, noisy speech
and music data has been considered. In Figure 1 the consid-
ered data histogram is presented. A very important peak in
zero can be observed.

AMR-WB is considered as a core layer of an experimen-
tal coder and the differential layer is MDCT transformed and
encoded in the transform domain. Under normal functioning
of the codec, 144 bits are reserved per frame for the encoding
of the transform coefficients. As we were also interested in
comparing the methods under study on a more general level,
we have considered a larger bit rate domain. Both real and
artificial data are considered.

3.4.1 Artificial data

We have considered first artificial normal data. In Figure 2
the SNR values for the three methods together with the rate
distortion limit are plotted. It can be observed that the Golay
based method performs the best in this case. The size of the
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Figure 2: Method comparison for Gaussian data.

codevectors (23) is larger than for the other two methods.
The coding efficiency of the Golay codewords given that at
these bit rates and type of data the unitary amplitudes are not
a big restriction is a second explanation of the good results.

3.4.2 Real data

We have considered first wideband speech. Several modes of
AMR-WB have been used as core codecs.
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Figure 3: Method comparison for speech signal differential
transform data. AMR-WB at 6.60 kbps is used as core codec.

The first case examined was the AMR-WB at 6.60 kbps.
In this case the data is less evenly distributed than the Gaus-
sian case (the pdf has longer tail, see Figure 1) and the lat-
tice based methods outperform the Golay based coding ap-
proach (Figure 3). Here, the limitation to unitary amplitudes
for most of the significant components in the transform vec-
tor, is clearly seen in the performance of the Golay based
method. The more efficient coding of the zero regions for
the proposed method is visible especially for the lower bit
rates and it attenuates at higher bit rates, where there are less
zero regions.

We also considermusic signals, and the SNR for the three

considered methods is plotted in Figure 4. Still the proposed
method outperforms the other two ones. Comparing the re-
sults from Figure 3 and 4 it can be observed that overall the
SNR values for music are overall lower than for the speech
case. This can be explained by the different statistic of the
data in the two cases and also confirmed by the fact that the
average shape factor for speech is 0.76 while for music is
0.81.

Three more AMR-WB profiles have been considered, for
speech signals and the resulting SNR values for RE8 based
coding versus the proposed method are presented in Table
2. It can be seen that for all studied cases, the SNR for the
proposed method is better than for the RE8 based method.

AMR-WB mode RE8 method New method
(kbps) SNR(dB) SNR(dB)
6.60 kbps 3.95 4.07
8.85 kbps 3.52 3.69
12.65 kbps 3.47 3.53
14.25 kbps 3.49 3.55

Table 2: Method comparison with respect to SNR, for differ-
ent modes of AMR-WB

It is interesting to compare the Golay based method and
the RE8 based method, in the case of G.729.1 as core codec,
and observe that preference is given to the Golay based
method as seen in Figure 5 [2]. The average shape factor
of the differential transform data in this case is 1.5 which is
much closer to a Gaussian and in accordance with the results
presented for the Gaussian data in Figure 2.
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Figure 4: Method comparison for music signal differential
transform data. AMR-WB at 6.60 kbps is used as core codec.

4. CONCLUSION

Together with the proposal of a low complexity coding
method, we have conducted a study on the influence of the
data type and core codec on the coding efficiency of the dif-
ferential transform data.

The Golay based method has better performance at low
bit rates for Gaussian or close to Gaussian data, case in which
the limitation induced to the amplitude values is not critical
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Figure 5: Method comparison for music signal differential
transform data. G.729.1 at 12 kbps is used as core codec.

and the Golay codes efficiency is fully utilized. For data with
longer tails and higher pick in zero the lattice based methods
perform better. Out of the two studied lattice based meth-
ods, the proposed one, using entropy encoding of lattice D+

10
codevectors performs better having higher SNR and lower
complexity. The low complexity has been enabled by a new
fast search algorithm that can be used in lattice codebooks
that are defined as union of leader classes.

As overall conclusion, it can be stated that in the coding
of transform differential data, the choice of the core codec is
of major importance in the statistical distribution of the data,
and consequently of the coding method choice and results.
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[4] S. Ragot, B. Kövesi, R. Trilling, D. Virette, N. Duc,
D. Massaloux, S. Proust, B. Geiser, M. Gartner,
S. Schandl, H. Taddei, Y. Gao, E. Shlomot, H. Ehara,
K. Yoshida, T. Vaillancourt, R. Salami, M. S. Lee, , and
D. Y. Kim, “ITU-T G.729.1: An 8-32 kbits/s scalable
coder interoperable with G.729 for wideband telephony
and voice over IP,” in Proceedings of ICASSP 2007,
Honolulu, Hawaii, USA, April, 15-20 2007.

[5] J.-P. Adoul, “La quantification vectorielle des signaux:
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