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ABSTRACT

The problem of power-efficient communication with guaranteed
quality of service (expressed in terms of per-user rate constraints)
is considered in a set of parallel vector broadcast channels with
separate linear precoding on each subchannel. With the restriction
to use linear precoding without time-sharing, the arising optimiza-
tion problem is non-convex due to the non-concavity of the rate
equations. Choosing a rate-space formulation, we derive an algo-
rithm to compute the globally optimal solution, which is based on
a branch-and-bound strategy to solve a difference-of-monotonic-
functions (DM) reformulation of the problem. Despite its expo-
nential complexity, the method is of theoretical interest as it can
be used as a benchmark for heuristic algorithm. We also discuss
a suboptimal algorithm, which is based on a recently proposed
gradient-projection method for power minimization in multiple-
input multiple-output (MIMO) broadcast channels. In numerical
simulations, the gradient-based method turns out to perform close
to the globally optimal solution if a good initialization is chosen.

1. INTRODUCTION

Many communication systems with a multi-antenna base station,
e.g., fading or multi-carrier broadcast channels, can be modelled as
parallel vector broadcast channels. If a certain quality of service
(QoS) has to be guaranteed for the users of such a system, the ques-
tion arises, how much power is needed to achieve the demanded
QoS when optimally exploiting the diversity of the channel coeffi-
cients on the different carriers or during the different fading states.

A common approach is to model the quality of service require-
ments as minimum rate constraints. The resulting optimization
problem will be introduced in Section 2 together with the mathe-
matical description of the system model. If dirty-paper coding and
time-sharing are possible in the considered communication system,
the problem can be transformed to a convex optimization problem,
and the globally optimal solution can be found by standard meth-
ods of convex optimization (e.g., [1, 2]). However, if the system is
constrained to use linear transceivers, this is no longer possible.

Different heuristic approaches that are applicable to parallel
vector broadcast channels with linear precoding have been proposed
in the literature, e.g., in [3–6]. These algorithms make different as-
sumptions about the types of strategies that are allowed in the sys-
tem. For instance, [4–6] refrain from the application of time-sharing
between different operation points, and [3–6] assume that precoding
has to be performed separately on each of the parallel subchannels,
i.e., no transmit symbol may be spread across several subchannels.
The latter assumption was called carrier-noncooperative transmis-
sion in [7].

In our previous work [8], we considered the problem with time-
sharing and with separate precoding on each subchannel. As time-
sharing can be interpreted as allowing convex combinations be-
tween different transmit strategies, the rate constraints are convexi-
fied in this case, and the problem can be treated by means of a dual
decomposition approach. The solution in [8] consists of solving a
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convex outer problem with non-convex inner problems for each sub-
channel, where the non-convex problems can be solved by means of
monotonic optimization techniques.

In the paper at hand, we adopt both assumptions introduced
above, i.e., we treat the case of separate precoding on each sub-
channel without time-sharing, as was done in [4–6]. However, dif-
ferent from the solutions in [4–6], we do not restrict ourselves to
zero-forcing techniques. Since we do not allow time-sharing, a dual
decomposition approach like in [8] is no longer possible since the
non-convex problem without time-sharing exhibits a duality gap in
general. Nevertheless, we will show that the globally optimal so-
lution can be found. An algorithm computing this solution, which
makes use of monotonicity properties of the rate-space reformula-
tion introduced Section 3, is presented in Section 4.

In the literature, monotonic optimization frameworks have been
used to optimize single-carrier wireless communication system with
linear transceivers, e.g., in [9] for a vector broadcast channel with
two users, in [10] for vector channels with an arbitrary number of
users, in [11, 12] for a multiple-input single-output (MISO) inter-
ference channel with two transmitter-receiver pairs, and in [13] for
a single-antenna interference channel with an arbitrary number of
transmitter-receiver pairs. These works are based on the polyblock
method [14], which is—as mentioned in [12]—a special case of the
branch and bound framework (e.g. [15, 16]).

In this paper, monotonic optimization will be used to solve the
power minimization problem in parallel vector broadcast channels
with linear precoding: after classifying the optimization problem at
hand as a difference-of-monotonic-functions (DM) problem, it can
be solved with the branch-and-bound method from [16], which we
briefly recapitulate in Section 4.

As will become clear at the end of that section, the approach is
not meant to be implemented in a practical system since its com-
putational complexity is prohibitively high. Therefore, we also dis-
cuss a less complex suboptimal solution (cf. Section 5), which is
a special case of the gradient-projection algorithm from [17]. This
method can be interpreted within the context of the same rate space
formulation. The globally optimal solution can then be used as a
benchmark to evaluate the performance of the gradient-projection
method in numerical simulations.

Note that unlike for the problem discussed in [13], a geomet-
ric programming approximation as proposed in [18] is not applica-
ble to the scenario considered in this paper. The reasons for this
are twofold. First, due to the multi-antenna base-station, its beam-
forming vectors have to be chosen before the problem can be ap-
proximatively written as a geometric program, and an alternating
optimization of the filter vectors and the power allocation is neces-
sary. Thus, a series of geometric programs would have to be solved
instead of a single geometric program. Second, the geometric pro-
gramming approximation is based on the assumption of high signal-
to-interference-and-noise ratio (SINR) for all users, which is not a
reasonable assumption in a broadcast channel: unlike in an inter-
ference channel, intended signal and interference are transmitted
over the same channel in a broadcast scenario. Consequently, un-
less the channels are orthogonalized by zero-forcing beamformers,
the SINR can be very high for a user only if the transmit power of
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the signals intended for the other users is low, but in that case, the
SINR becomes low for the other users. Due to this fact, a geometric
program approximating the original optimization in the broadcast
channel does not even have a feasible solution in general. Instead,
a successive convex approximation [18], which involves computing
a monomial approximation with an exponentially high number of
terms, would be necessary. Therefore, the geometric programming
framework from [18] is not considered in the remainder of this pa-
per.

In this work, vectors are typeset in boldface letters, and we use
0 for the zero vector and 1 for the all-ones vector. The vector ei is
the i-th canonical unit vector, which has a one as the i-th entry and

zeros elsewhere. The operations •T and •H denote the transpose
and the conjugate transpose, respectively. We use the shorthand

notation (•(n))Nn=1 for [•(1),T, . . . ,•(N),T]T. The order relation
x ≥ y has to be understood element-wise, and R

n
0,+ is the closed

positive orthant of the R
n, i.e., Rn

0,+ = {x ∈ R
n: x≥ 0}.

2. SYSTEMMODEL AND PROBLEM FORMULATION

We consider a base station equipped with M antennas, which trans-
mits independent data to K single-antenna receivers using N or-
thogonal subchannels (e.g., different carriers). The channels of all
users k on all subchannels n are assumed to be frequency flat and

perfectly known, so that they can be described by vectors h
(n),H
k

∈

C
1×M . The additive circularly symmetric complex Gaussian noise

η
(n)
k
∼ CN (0,σ

(n),2
k

) with variance σ
(n),2
k

is assumed to be inde-
pendent across users and across subchannels and independent of the
transmitted data.

We do not allow that a transmit symbol is spread across various
subchannels. Thus, the signal that user k receives on subchannel n
can be written as

y
(n)
k

= h
(n),H
k

K
∑

k′=1

t
(n)
k′ s

(n)
k′ +η

(n)
k

, (1)

where s
(n)
k′ ∼ CN (0,1) is the data symbol of user k′ on subchannel

n, and t
(n)
k′ ∈ C

M is the corresponding beamforming vector.
It is well known that a set of rates can be achieved in a MISO

broadcast channel with a certain sum transmit power if and only
if the same rates can be achieved in the dual uplink [19] with the
same sum transmit power. Since this duality can be applied on each
subchannel, and since our aim is to minimize the sum of the per-
subchannel transmit powers

P =
N
∑

n=1

K
∑

k=1

t
(n),H
k

t
(n)
k

, (2)

we can also perform the optimization in the dual uplink. After-
wards, the downlink beamforming vectors can be obtained by trans-
forming the results back to the downlink as described in [19].

In the dual uplink with uplink channel vectors g
(n)
k

=

σ
(n),−1
k

h
(n)
k

and uplink noise covariance matrices C
(n)
η = IM , the

signal received on subchannel n is given by

ξ
(n) =

K
∑

k=1

g
(n)
k

√

p
(n)
k

s
(n)
k

+η
(n)

, (3)

where η(n) ∼ CN (0,IM ) is the uplink noise on carrier n, and the
sum transmit power can be expressed in terms of the uplink transmit

powers p
(n)
k

as

P =
N
∑

n=1

K
∑

k=1

p
(n)
k

. (4)

The achievable rate of user k on subchannel n is then given by

r
(n)
k

(p(n)) = (5)

log2






1+p

(n)
k

g
(n),H
k



IM +
∑

k′ 6=k

p
(n)
k′ g

(n)
k′ g

(n),H
k′





−1

g
(n)
k






,

which is a function of the vector p(n) = [p
(n)
1 , . . . ,p

(n)
K

]T, and the

per-user sum rate is rk =
∑N

n=1 r
(n)
k

(p(n)).
As already stated, we want to find the minimal transmit power

that has to be spent in order to serve all users with a desired qual-
ity of service, where the QoS constraints are expressed in terms

of demanded minimum rates ρ= [ρ1, . . . ,ρK ]T. The optimization
problem reads

min
(p(n))Nn=1∈R

KN
0,+

N
∑

n=1

1
T
p
(n)

(6)

s.t.

N
∑

n=1

r
(n)(p(n))≥ ρ

with r(n)(p(n)) = [r
(n)
1 (p(n)), . . . , r

(n)
K

(p(n))]T. In this paper,
we assume that the rate requirement vector ρ is chosen such that
a feasible solution to (6) exists. To verify if this condition is ful-
filled, the sufficient feasibility test for multi-carrier broadcast chan-
nels proposed in [20] can be used.

3. RATE SPACE FORMULATION

In this section, we will introduce a rate space formulation of prob-
lem (6). To this end, we introduce per-subchannel rate targets

ρ
(n)
k

for all users as new variables, group them in vectors ρ(n) =

[ρ
(n)
1 , . . . ,ρ

(n)
K

]T, and replace the rate constraints of problem (6)
with

r
(n)(p(n))≥ ρ

(n)≥ 0 ∀n and
∑

n

ρ
(n) ≥ ρ. (7)

The task is now to find the minimal transmit power for given per-
subchannel rate targets and the optimal division of the per-user rate
requirements in per-subchannel rate targets. A similiar approach
was pursued in our previous work [17] on MIMO broadcast chan-
nels, where per-stream rate targets were introduced. The optimiza-
tion with respect to these per-stream rate targets was performed in a
suboptimal manner by a gradient-projection approach. In this paper,
we will not only discuss the application of this method to the special
case of parallel vector broadcast channels, but also propose an algo-
rithm that is capable of finding the globally optimal per-subchannel
rate targets.

For given values of all ρ
(n)
k

, the power minimization problem
can be solved separately on each subchannel as the coupling be-
tween the different subchannels is removed. Thus, the problem

min
p(n)∈R

K
0,+

1
T
p
(n) s.t. r(n)(p(n))≥ ρ

(n)
(8)

can be solved independently on each subchannel n. Problem (8) is
the well-investigated power minimization problem in single-carrier
vector broadcast channels, which can be solved in a globally opti-
mal manner, e.g., using the iterative method from [21].

Similar as in [8], we define the function

q
(n)(ρ(n)) =

{

optimal p(n) of (8) if (8) is feasible

[∞, . . . ,∞]Totherwise,
(9)
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where infeasibility can result from too demanding rate targets ρ
(n)
k

.
The feasibility test can be performed by means of [22]. Problem (6)
is then equivalent to

min
(ρ(n))Nn=1∈R

KN
0,+

N
∑

n=1

1
T
q
(n)(ρ(n)) (10)

s.t.

N
∑

n=1

ρ
(n) ≥ ρ.

The equivalence between (6) and (10) follows from the fact that
(8) is solved in a globally optimal manner. Thus, for the optimizer

(p(n))Nn=1 of (6), it holds that

N
∑

n=1

1
T
q
(n)

(

r
(n)(p(n))

)

=
N
∑

n=1

1
T
p
(n)

, (11)

and the optimal sum power of (6) is also achievable in (10). On
the other hand, every feasible solution of (10) corresponds to a sum
power sufficient to fulfill the constraints of the original problem (6),
so that no sum power lower than the optimum of (6) is achievable
in (10).

4. GLOBALLY OPTIMAL SOLUTION

In order to derive a globally optimal solution, we will now
study the monotonicity properties of problem (10). The value of

1
Tq(n)(ρ(n)) is non-decreasing in ρ(n), i.e., 1Tq(n)(ρ′(n)) ≤

1
Tq(n)(ρ(n)) for ρ′(n) ≤ ρ(n). This can be seen from the fact

that all rate vectors ρ′(n) ≤ ρ(n) are elements of the rate region

with sum power 1Tq(n)(ρ(n)) if ρ(n) is achievable with finite sum

power. The same reasoning was already used in [8]. If ρ(n) can-
not be achieved with finite sum power, the inequality is obvious.
Consequently, problem (10) has a non-decreasing cost function.

The problem could be solved by an outer approximation method
with NK variables similar to the polyblock approach [14]. Details
of this method are omitted because we will concentrate on a differ-
ent solution approach, which is based on the reformulation

min
(ρ(n))N−1

n=1 ∈R
K(N−1)
0,+

f1

(

(ρ(n))N−1
n=1

)

−f2
(

(ρ(n))N−1
n=1

)

(12)

with f1

(

(ρ(n))N−1
n=1

)

=

N−1
∑

n=1

1
T
q
(n)(ρ(n))

and f2

(

(ρ(n))N−1
n=1

)

=

−1
T
q
(n)

(

max

{

0,ρ−
∑N−1

n=1
ρ
(n)

})

,

where the maximum has to be understood element-wise. Rewriting

the constraints that (10) imposes on ρ(N) as

ρ
(N) ≥ ρ−

∑N−1

n=1
ρ
(n)

and ρ
(N) ≥ 0 (13)

and taking into account that at least one of the inequalities in (13)
is fulfillled with equality in the optimum due to the monotonicity of
the cost function of (10), the equivalence of (10) and (12) is evident.

In (12), the number of variables is K(N−1), and the only con-
straint is the non-negativity constraint of the rate targets. The cost
function is the difference of monotonically non-decreasing func-
tions. Therefore, the problem can be solved with the branch-reduce-
and-bound method from [16].

In the following, we will briefly recapitulate this method, adapt-
ing it to problem (12). Since the branch-reduce-and-bound (BRB)

algorithm for difference-of-monotonic-functions (DM) problems
from [16] also allows for DM constraints, but problem (12) only
has a DM cost function, the step which is called reduction is not
necessary for our application and will be omitted.

For a function f with

f(x) = f1(x)−f2(x), (14)

where f1 and f2 are non-decreasing in x, the following bounds are
valid:

f(x)≥ LB = f1(a)−f2(b) ∀x ∈ B (15)

min
x∈B

f(x)≤ UB = f1(a)−f2(a) (16)

with B= {x: a≤ x≤ b}. The first bound is due to the monotonic-
ity of f1 and f2 and the second bound is an achievability bound.
Given a set of boxes B, the smallest lower bound L=minB∈BLB
is a lower bound to f(x) for x ∈

⋃

B∈B
B. By always replacing the

box B∗ =argminB∈BLB by two disjoint subboxes B′ and B′′ with

B′∪B′′ =B∗ (using a bisectional rectangular subdivision, cf. [16]),
L can be increased until |L−minx∈

⋃
B∈B

B f(x)|< ǫ if f1 and f2

are continuous [16]. The reason for this is that for continuous f1,
f2, the bound (15) is consistent, i.e., |LB−minx∈B f(x)| → 0 for
b−a→ 0.

As the minimum minx∈
⋃

B∈B
B f(x) is unknown, convergence

is instead detected using the criterion |L− U | < ǫ, where U =
minB∈BUB is the smallest upper bound, i.e., the current best value.
For continuous functions f1, f2, (16) is consistent, too, so that it is
ensured that U eventually converges to the actual minimum, and
thus |L−U | → 0.

For the problem at hand, we have x = (ρ(n))N−1
n=1 , and we

start with a box B0 = {x: 0 ≤ x ≤ (y(n))N−1
n=1 } with y(n) = ρ.

This choice of B0 surely contains the optimizer of problem (12)
and all x ∈ B0 fulfill the non-negativity constraint. For conver-
gence, it suffices that f1 and f2 are continuous at all points yielding
a finite value of the function, and this continuity was shown in [8,
Lemma 1]. The intuition behind this property is that for achiev-

able rate targets ρ(n), q(n)(ρ(n)) can be shown to be the inverse

function of the continuous uplink rate function r(n)(p(n)).
In each iteration, the two bounds have to be calculated for two

new subboxes B′ and B′′, where the lower corner of B′ coincides
with the lower corner of B∗ while the upper corner of B′′ coincides
with the upper corner of B∗. Reusing previously computed values
of f1 and f2, this can be done with one evaluation of f1, namely at
the lower corner a′′ of B′′, and two evaluations of f2, namely at a′′

and at the upper corner b′ of B′. Thus, the per-subchannel problem
(8), which can be solved in polynomial time, has to be solved N+1
times per iteration of the branch-and-bound method. However, it
follows from [23, Theorem 4] that in the worst case, the number
of branch-and-bound iterations needed to find an ǫ-optimal solution

is O(
(

c1
ǫ

)

K(N−1)
c2 ), where c1 and c2 are constants that depend on

properties of the objective function. Therefore, the worst-case com-
plexity of the algorithm to solve (12) is exponential in K and N .

To get an impression about the complexity of the algorithm, the
number of branch-and-bound iterations needed for the numerical
simulations in Section 6 is plotted in Fig. 1. The histogram shows
how often the number of iterations needed to compute the optimal
solution lies in the indicated intervals. All details on the system
considered in the numerical simulations are given in Section 6. We
observe a very high number of iterations for some channel realiza-
tions while in most cases, a significantly lower number is sufficient.
This complies with the fact that the algorithm has a high worst-case
complexity.

5. GRADIENT-BASED SUBOPTIMAL SOLUTION

To solve problem (10) by means of a gradient-projection ap-
proach, we have to calculate the partial derivative of P =
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Figure 1: Histogram of the Number of Iterations of the Branch-and-
Bound Algorithm.

∑N
s=11

Tq(s)(ρ(s)) with respect to ρ
(n)
k

. To do so, we make use
of the equivalence of the considered parallel vector broadcast chan-
nels with a MIMO broadcast channel with block-diagonal channel
matrices

H
H
k = blkdiag

(

h
(1),H
k

, . . . ,h
(N),H
k

)

∈ C
N×MN

, (17)

and diagonal noise covariance matrices

Cηk = diag
(

σ
(1),2
k

, . . . ,σ
(N),2
k

)

∈ C
N×N

(18)

(cf., e.g., [7]). The assumption of separate coding on each subchan-
nel is equivalent to using diagonal matrices as transmit filters and
block-diagonal matrices as receive filters in the dual uplink of this
equivalent MIMO system.

Applying the results from [17] to this equivalent MIMO system
taking into account the diagonal structure of the uplink precoding
matrices, we get

∂P

∂ρ
(n)
k

= 1
T





















∂r
(n)
1

∂p
(n)
1

. . .
∂r

(n)
1

∂p
(n)
K

...
. . .

...

∂r
(n)
K

∂p
(n)
1

. . .
∂r

(n)
K

∂p
(n)
K





















−1

ek. (19)

The partial derivatives inside the matrix are obtained by taking

the derivative of (5), and they have to be evaluated at p(n) =

q(n)(ρ(n)).
In general, after a gradient step

ρ̃
(n)
k
← ρ

(n)
k
−d

∂P

∂ρ
(n)
k

∀k, ∀n (20)

with step size d, the constraint of problem (10) is no longer fulfilled.
A projection to the set of feasible rate targets in the sense of mini-
mal Euclidian norm can be performed by solving a waterfilling-like
optimization problem as was discussed, e.g., in [24].

If the value of the cost function of (10) is increased by the gra-
dient update and the projection, a too large step size has been used.
In this case, the gradient-projection step has to be performed with

a decreased step size instead. Since the function q(n)(ρ(n)) maps
infeasible rate targets to infinite transmit power, they are only a spe-
cial case of an increased sum transmit power. In the subsequent it-
eration, the algorithm starts again with the initial step size and again
decreases the step size until a decrease in sum power is attained. Re-
peating the gradient step and the projection until convergence, we
obtain a suboptimal solution to (10). The step size adaption ensures
that the sum transmit power is monotonically decreasing. Since the
power is, in addition, bounded from below by the optimal solution,
convergence of the algorithm is guaranteed.
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Figure 2: System with 4 Users: Transmit Power for Different Per-
User Rate Requirements.

The algorithm described in this section is, in fact, a special case
of the algorithm for MIMO broadcast channels from [17]. The dif-
ference is, however, that the update of the uplink transmit filters
is eventually nothing more than a power allocation procedure due
to the assumption of diagonal filter matrices. This power alloca-

tion is implicitly optimized within each evaluation of q(n)(ρ(n)).
Furthermore, no uplink equalizers need to be computed during the
execution of the algorithm since the formulation based on the rate
equation (5) does not depend on these equalizers. Instead, they only
need to be computed as part of the uplink-to-downlink transforma-
tion after convergence of the algorithm. Therefore, the algorithm
from [17] is reduced to a series of gradient-projection steps for the
system considered in this paper.

To compute the gradient in the first iteration, the initial rate tar-

gets (ρ(n))Nn=1 need to be feasible. A feasible initialization could
be found using the algorithm proposed in [20]. Another possibil-
ity is to use the per-stream rates resulting from any other heuristic
power minimization as initial per-stream rate targets. For instance,
the greedy zero-forcing scheme discussed in [6] could be used.

6. NUMERICAL RESULTS AND DISCUSSION

Due to its exponential complexity, the algorithm computing the
globally optimal solution is not feasible for practical implementa-
tion. However, it is useful as a benchmark for less complex sub-
optimal algorithms. In Fig. 2, we consider a system with M = 2
transmit antennas, N = 2 subchannels, and K = 4 users. The small
dimensionality of the problem enables us to compute the globally
optimal solution by means of the proposed algorithm. The rate
requirements are ρ1 = ρ2 = ρ0 and ρ3 = ρ4 = 2ρ0, all channel
coefficients are i.i.d. circularly symmetric complex Gaussian with
zero mean and unit variance, and the noise power is assumed to be

σ
(n),2
k

= 1 ∀k, ∀n. To average over 1,000 realizations, we use the
arithmetic mean in the dB domain.

As discussed in Section 5, different initializations of the per-
subchannel rate targets are possible for the suboptimal gradient-
based algorithm. For the curve called “basic init”, we used the al-
gorithm from [20] to obtain a feasible initialization, while the rate
allocation of the greedy zero-forcing scheme from [6] was used as
initialization for the curve called “ZF init.”

As can be seen, different choices of the initial per-stream rate
targets can have a strong impact on the outcome of the algorithm
as the algorithm may converge to different stationary points for
different initializations. Especially for high rate requirements, the
gradient-based method with the basic initialization computes solu-
tions with high sum transmit power and is even outperformed by
the greedy zero-forcing (ZF) scheme from [6]. However, using the
per-stream rates computed by this zero-forcing method as initial
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per-stream rate targets, the gradient method can achieve a close-
to-optimum performance on average. The reason for this is that it
is more likely that the algorithm converges to the globally optimal
solution if an initialization is used that is in the neighborhood of
this solution. It is known that zero-forcing can perform close to
the globally optimal solution (especially for high rate requirements)
while the basic initialization might correspond to very high transmit
powers as it is based only on feasibility considerations.

The high initial transmit power of the basic initialization can
also be observed in Fig. 3, where we have plotted the development
of the sum transmit power during the execution of the algorithm.
For this simulation, we chose a larger system (M = 2 transmit an-
tennas, N = 16 subchannels, and K = 32 users) and random per-
user rate requirements, which are the absolute values of i.i.d. real
Gaussian random variables with zero mean and unit variance. As
this system does not operate in the high rate regime, the gradient
method with the basic initialization is also able to achieve low trans-
mit powers, but the number of necessary iterations is significantly
lower if the zero-forcing initialization is used.

In summary, the gradient-projection algorithm proposed in this
paper, quickly converges to solutions that are close to the global op-
timum if a good initialization is used. Furthermore, as can be eas-
ily verified, the steps necessary in each iteration can be performed
in polynomial time, so that the complexity of the method is signifi-
cantly reduced when compared to the globally optimal solution with
exponential complexity.
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