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ABSTRACT

Securing a stored fingerprint image is of paramount importance be-
cause a compromised fingerprint cannot be easily revoked. In this
work, an input fingerprint image is mixed with another fingerprint
(e.g., from a different finger), in order to produce a new mixed im-
age that obscures the identity of the original fingerprint. Mixing fin-
gerprints creates a new entity that looks like a plausible fingerprint
and, thus, (a) it can be processed by conventional fingerprint algo-
rithms and (b) an intruder may not be able to determine if a given
print is mixed or not. To mix two fingerprints, each fingerprint is
decomposed into two components, viz., the continuous and spiral
components. After pre-aligning the two components of each finger-
print, the continuous component of one fingerprint is combined with
the spiral component of the other fingerprint image in order to gen-
erate a mixed fingerprint. Experiments on the WVU and FVC2000
datasets show that the mixed fingerprint can potentially be used for
authentication and that the identity of the original fingerprint cannot
be easily deduced from the mixed fingerprint. Further, the mixed
fingerprint can facilitate in the generation of cancelable templates.

1. INTRODUCTION

Preserving the privacy of the stored biometric template (e.g., fin-
gerprint image) is necessary to mitigate concerns related to data
sharing and data misuse [10]. This has heightened the need to im-
part privacy to the stored template, i.e., to de-identify it in some
way. De-identifying biometric templates is possible by transform-
ing it into a new template using a set of application-specific trans-
formation functions, such that the original identity cannot be easily
deduced from the transformed template. A template that is trans-
formed in this way is referred to as a cancelable template since it
can be “canceled” by merely changing the transformation function
[3] [17]. At the same time, the transformed template can be used
during the matching stage within each application while preventing
cross-application matching. Further, the transformation parameters
can be changed to generate a new template if the stored template is
deemed to be compromised.

There has been a vast amount of work done in generating a

cancelable fingerprint template [16].1 In this study, we consider
the problem of mixing two fingerprint images in order to generate
a new cancelable fingerprint image. The mixed image incorporates
characteristics from both the original fingerprint images, and can be
used in the feature extraction and matching stages of a biometric
system. Mixing fingerprints can be useful in several applications:
(a) it can be used to obscure the information present in an individ-
ual’s fingerprint image prior to storing it in a central database; (b) it
can be used to generate a cancelable template, i.e., the template can
be reset if the mixed fingerprint is compromised; (c) it can be used
to generate virtual identities by mixing fingerprint images pertain-
ing to an individual; and (d) it can potentially be used for fingerprint
mosaicing [19]. The mixing process begins by decomposing each
fingerprint image into two components, viz., the continuous and spi-
ral components (see Figure 1). Next, the two components of each
fingerprint are aligned to a common coordinate system. Finally,

1For an excellent review on the topic of Biometric Security in general,

please see [9].

the continuous component of one fingerprint is combined with the
spiral component of the other fingerprint. The experimental results
confirm that (a) the new fused fingerprint can potentially be used for
authentication and (b) the identity of the original fingerprint cannot
be easily deduced from the mixed fingerprint.

Figure 1: Proposed approach for mixing fingerprints

The concept of fingerprint mixing2 can be utilized in the fol-
lowing ways.

Scenario I: Consider a fingerprint system in which the left in-
dex finger, FLs, of subject IDs is being enrolled. During enrollment,
an impression of another finger of the subject (say the right index
finger, FRs) is mixed with FLs resulting in a mixed print Ms. Next,
Ms is stored in the central database while the images FLs and FRs

are discarded. During authentication, the subject offers a sample of
the left index finger, FL′

s, and a sample of the right index finger,
FR′

s. These two images are then mixed resulting in a new print M′
s.

In order to verify the subject’s identity, M′
s is compared with Ms in

the database. Therefore, the original fingerprint images of the left
and right index fingers are never stored in the database.

Scenario II: Consider a fingerprint system that maintains a
small set of pre-determined auxiliary fingerprints, A , correspond-
ing to multiple fingers (each finger in A is assumed to have mul-
tiple impressions). Suppose that subject IDs offers the left index
finger, FLs, during enrollment. At that time, the system searchers
through the auxiliary set to locate a “compatible” fingerprint, say
Fm

A (here the superscript m denotes a specific finger in the auxiliary
set), which is then mixed with FLs to generate a new mixed print
Ms that is stored in the database; FLs is discarded. During authen-
tication, when the subject presents a sample of the left index finger,
FL′

s, once again, the system determines the most “compatible” fin-

2This work does not claim that mixing fingerprints is better than other

methods for template security and privacy; a more extensive treatment is

necessary to establish that. Rather, it provides an alternate way of approach-

ing the problem - an approach that has hitherto not been studied in the liter-

ature.
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gerprint, say Fn
A , from the auxiliary set. FL′

s is mixed with Fn
A to

generate a mixed fingerprint M′
s, which is then compared against

the database entry Ms. Here, there are 3 possibilities: (a) Fm
A and

Fn
A could be the exact same fingerprint from A , i.e., Fm

A = Fn
A ; (b)

Fm
A and Fn

A could be different impressions of the same finger, i.e.,
Fm

A 6= Fn
A and m = n; or (c) Fm

A and Fn
A are from different fingers,

i.e., m 6= n. Possibilities (a) and (b) are preferable for successful
matching of Ms with M′

s.
The rest of the paper is organized as follows. Section 2 presents

the proposed approach for mixing fingerprints. Section 3 reports the
experimental results and Section 4 concludes the paper.

2. MIXING FINGERPRINTS: THE PROPOSED
APPROACH

The ridge flow of a fingerprint can be represented as a 2D Amplitude
and Frequency Modulated (AM-FM) signal [13]:

I(x,y) = a(x,y)+b(x,y)cos(Ψ(x,y))+n(x,y), (1)

where I(x,y) is the intensity of the original image at (x,y), a(x,y)
is the intensity offset, b(x,y) is the amplitude, cos(ψ(x,y)) is
the phase and n(x,y) is the noise. Based on the Helmholtz
Decomposition Theorem [5], the phase can be uniquely decom-
posed into the continuous phase and the spiral phase, Ψ(x,y) =
ψc(x,y)+ψs(x,y). As shown in Figure 1, the continuous compo-
nent, cos(ψc(x,y)), defines the local ridge orientation and the spiral
component, cos(ψs(x,y)), characterizes the minutiae locations.

2.1 Fingerprint Decomposition

Since ridges and minutiae can be completely determined by the
phase, we are only interested in Ψ(x,y). The other three parame-
ters in Equation (1) contribute to the realistic textural appearance
of the fingerprint. Before the decomposition task, the phase Ψ(x,y)
must be reliably estimated; this is termed as demodulation.

2.1.1 Vortex demodulation

The objective of vortex demodulation [12] is to extract the ampli-
tude b(x,y) and phase Ψ(x,y) of the fingerprint pattern. First, the
DC term a(x,y) has to be removed since the failure to remove this
offset correctly may introduce significant errors in the demodulated
amplitude and phase [12]. To facilitate this, a normalized fingerprint
image, f (x,y), containing the enhanced ridge pattern of the finger-

print (generated by the VeriFinger SDK3) is used. From Equation
(1), f (x,y) = I(x,y)−a(x,y)≃ b(x,y)cos(Ψ(x,y)). The vortex de-
modulation operator V takes the normalized image f (x,y) and ap-
plies a spiral phase Fourier multiplier exp[iΦ(u,v)]:

V{ f (x,y)}= F−1{exp[iΦ(u,v)].F{b(x,y).cos[Ψ(x,y)]}}
∼=−iexp[iβ (x,y)].b(x,y).sin[Ψ(x,y)]

(2)

where, F is the Fourier transform, F−1 is the inverse Fourier trans-
form and exp[iΦ(u,v)] is a 2-D signum function [12] defined as a
pure spiral phase function in the spatial frequency space (u,v):

exp[iΦ(u,v)] =
u+ iv√
u2 + v2

. (3)

Note that in Equation (2) there is a new parameter, β (x,y), repre-
senting the perpendicular direction of the ridges. In Equation (4),
this directional map is used to isolate the desired magnitude and
phase from Equation (2), i.e.,

−exp[−iβ (x,y)].V{ f (x,y)}= ib(x,y).sin[Ψ(x,y)]. (4)

Then, Equation (4) can be combined with the normalized image,
f (x,y), to obtain the magnitude b(x,y) and the raw phase map
Ψ(x,y) as follows:

−exp[−iβ (x,y)].V{ f (x,y)}+ f (x,y) = b(x,y).exp(iΨ(x,y)). (5)

3http://www.neurotechnology.com

Therefore, determining β (x,y) is essential for obtaining the ampli-
tude and phase functions, b(x,y) and Ψ(x,y), respectively. The di-
rection map β (x,y) can be derived from the orientation image of
the fingerprint by a process called unwrapping. A sophisticated
unwrapping technique using the topological properties of the ridge
flow fields is necessary to account for direction singularities such as
cores and deltas [13] [4].

2.1.2 Direction Map β (x,y)

Direction is uniquely defined in the range 0◦ to 360◦ (modulo 2π).
In contrast, fingerprint ridge orientation is indistinguishable from
that of a 180◦ rotated ridge (modulo π). Therefore, the fingerprint’s
orientation image, denoted by θ(x,y), should be unwrapped to a
direction map, β (x,y) [13]. Phase unwrapping is a technique used
to address a 2π phase jump in the orientation map. The unwrap-
ping process adds or subtracts an offset of 2π to successive pixels
whenever a phase jump is detected [5]. This process proceeds by
starting at any pixel within the orientation image and using the lo-
cal orientation information to traverse the image pixel-by-pixel, and
assigning a direction (i.e., the traversed direction) to each pixel with
the condition that there are no discontinuities of 2π between neigh-
boring pixels. However, the presence of flow singularities means
that there will be pixels in the orientation image with a disconti-
nuity of ±2π in the traversed direction and, therefore, the above
unwrapping technique will fail. In fingerprint images, the flow sin-
gularities arise from the presence of singular points such as core and
delta. Figure 2(a) illustrates that estimating the direction of ridges
in the vicinity of a core point by starting at any point within the
highlighted rectangle and arbitrarily assigning one of two possible
directions, can result in an inconsistency in the estimated directions
inside the dashed circle. This inconsistency in the estimated direc-
tion map can be avoided by using a branch cut [5]. The branch cut
is a line or a curve used to isolate the flow singularity and which
cannot be crossed by the unwrapping paths. Consequently, branch
cut prevents the creation of 2π discontinuities and restores the path
independence of the unwrapping process. As shown in Figure 2(b),
tracing a line down from the core point and using this line as a bar-
rier resolves the inconsistency near the core point (i.e, inside the
dashed circle) by selecting two different directions in each side of
the branch cut within the same region (i.e, inside the highlighted
rectangle).

(a) (b)

Figure 2: A portion of the estimated direction map (a) without as-
signing a branch cut and (b) after assigning a branch cut [7]

The adopted strategy, based on the techniques described in [13]
[7] [4] to estimate the direction map β (x,y), is summarized in the
following three steps.

1. The orientation image θ(x,y) of the normalized fingerprint
f (x,y) is determined via the least mean-square method [8]. Then
the Poincaré [14] index is used to locate the singular points, if any.

2. In case there are singular points, an algorithm is applied
to extract the branch cuts along suitable paths such as ridge con-
tours, as shown in Figure 2(b), to resolve the inevitable direc-
tion ambiguities near those singularities. The branch cuts are ex-
tracted by tracing the contours of ridges (rather than the orien-
tation field) in the skeleton images. The algorithm starts from
each singular point in a skeleton image until the trace reaches the
border of the segmented foreground region of the fingerprint or
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when it encounters another singular point. To generate the skele-
ton images, first, a set of smoothed orientation maps are generated
by applying a smoothing operation at different smoothing scales
(σ ∈ {1,2,3,5,10,15,20,32,50,64}) on θ(x,y). Next, a set of Ga-
bor filters, tuned to the smoothed orientation maps [8], is convolved
with the normalized image f (x,y). Then, a local adaptive thresh-
olding and thinning algorithm [20] is applied to the directionally
filtered images producing 10 skeleton images. Thus, there are at
least 10 branch cuts and the shortest one, associated with each sin-
gular point, is selected. Figure 3 shows the final extracted branch
cuts from all singular points.

3. The phase unwrapping algorithm [6] [5] starts from any ar-
bitrary pixel in the orientation map θ(x,y) and visits the other pix-
els, which are unwrapped in the same manner as in images without
singularity, with the exception here that the branch cuts cannot be
crossed. Then, each branch cut is visited individually and its pixels
are traced and unwrapped.

(a) Normalized Fingerprint (b) Branch Cuts

Figure 3: Example of a fingerprint with three singular points (2
cores and 1 delta). (a) The normalized fingerprint. (b) The extracted
branch cuts obtained by tracing the ridges instead of the orientation.

Finally, the direction map of the wave normal β (x,y) is deter-
mined from the unwrapped θ(x,y) by adding π/2 which allows for
the determination of the amplitude b(x,y) and phase Ψ(x,y) modu-
lations of fingerprint image from Equation (5).

2.1.3 Helmholtz Decomposition

The Helmholtz Decomposition Theorem [5] is used to decompose
the determined phase Ψ(x,y) of a fingerprint image into two phases.
The first phase, ψc is a continuous one, which can be unwrapped,
and the second is a spiral phase,ψs, which cannot be unwrapped but
can be defined as a phase that exhibits spiral behavior at a set of
discrete points in the image. The Bone’s residue detector [1] [5]
is first used to determine the spiral phase ψs(x,y) from the demod-
ulated phase Ψ(x,y). Next the continuous phase, is computed as
ψc(x,y)=Ψ(x,y)−ψs(x,y). Finally, the extracted branch cuts from
the previous step are used again to unwrap the continuous phase.

2.2 Fingerprint Pre-alignment

To mix two different fingerprints after decomposing each fingerprint
into its continuous component cos(ψc(x,y)) and spiral component
cos(ψs(x,y)), the components themselves should be appropriately
aligned. Previous research has shown that two fingerprints can be
best aligned using their minutiae correspondences. However, it is
difficult to insure the existence of such correspondences between
two fingerprints acquired from different fingers. In this paper, the
components are pre-aligned to a common coordinate system prior
to the mixing step by utilizing a reference point and an alignment
line. The reference point is used to center the components. The
alignment line is used to find a rotation angle about the reference
point. This angle rotates the alignment line to make it vertical. The
two phase components of each fingerprint are rotated by the same
angle.

2.2.1 Locating a reference point

The reference point used in this work is the northern most core point
of extracted singularities. For plain arch fingerprints or partial fin-

gerprint images, Novikov et al.’s technique [15] [18], based on the
Hough transform, is used to detect the reference point.

2.2.2 Finding the alignment line

The first step in finding the alignment line is to extract high cur-
vature points from the skeleton of the fingerprint image’s continu-
ous component. Next, horizontal distances between the reference
point and all high curvature points are calculated. Then, based on
these distances, an adaptive threshold is applied to select and cluster
points near the reference point. Finally, a line is fitted through the
selected points to generate the alignment line.

2.3 Mixing Fingerprints

Let F1 and F2 be two different fingerprint images from different
fingers, and let ψci(x,y) and ψsi(x,y) be the pre-aligned continuous
and spiral phases, i = 1,2. As shown in Figure 1, there are two
different mixed fingerprint image that can be generated, MF1 and
MF2:

MF1 = cos(ψc2 +ψs1),

MF2 = cos(ψc1 +ψs2).
(6)

The continuous phase of F2 (F1) is combined with the spiral phase of
F1 (F2) which generates a new fused fingerprint image MF1 (MF2).

2.4 Compatibility Measure

Variations in the orientations and frequencies of ridges between fin-
gerprint images can result in visually unrealistic mixed fingerprint
images, as shown in Figure 4. This issue can be mitigated if the
two fingerprints to be mixed are carefully chosen using a compati-
bility measure. In this paper, the compatibility between fingerprints
is computed using non-minutiae features, viz., orientation fields and
frequency maps of fingerprint ridges.

Figure 4: Examples of mixed fingerprints that look unrealistic.

The orientation and frequency images are computed from the
pre-aligned continuous component of a fingerprint using the tech-
nique described in [8]. Then, Yager and Amin’s [21] approach is
used to compute the compatibility measure. To compute the com-
patibility between two fingerprint images, their orientation fields
and frequency maps are first estimated (see below). Then, the com-
patibility measure C between them is computed as the weighted sum
of the normalized orientations and frequency differences, OD and
FD, respectively:

C = 1− (α .OD+ γ.FD), (7)

where α and γ are weights that are determined empirically.
Figure 5 shows examples of mixed fingerprints after utilizing

the compatibility measure4 to select the fingerprints pairs, (F1, F2).

4Perfect compatibility (C = 1) is likely to occur when the two prints to be

mixed are from the same finger - a scenario that is not applicable in the pro-

posed application. On the other hand, two fingerprints having significantly

different ridge structures are unlikely to be compatible (C = 0) and will gen-

erate an unrealistic looking fingerprint. Between these two extremes, lies a

range of possible compatible values that is acceptable. However, determin-

ing this range automatically may be difficult.
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Figure 5: Examples of mixed fingerprints that appear to be visually
realistic.

2.4.1 Orientation Fields Difference (OD)

The difference in orientation fields between F1 and F2 is computed
as

OD =

(

1

S

)

∑
(x,y)∈S

d(θ1(x,y),θ2(x,y)), (8)

where S is a set of coordinates within the overlapped area of the
aligned continuous components of two different fingerprints, and
θ1 and θ2 represent the orientation fields of the two fingerprints.
If orientations are restricted to the range [−π/2,π/2], the operator
d(.) is written as

d(α ,γ) =







π − (α − γ), if π
2 < α − γ

|α − γ|, if − π
2 < α − γ < π

2

π +(α − γ), if α − γ ≤− π
2 .

(9)

2.4.2 Frequency Maps Difference (FD)

Local ridge frequencies are the inverse of the average distance be-
tween ridges in the local area in a direction perpendicular to the
local orientation. Hong et al.’s approach [8] is used to find the lo-
cal ridge frequencies of the continuous component of a fingerprint
image. The difference function is computed as

FD =

(

1

S

)

∑
(x,y)∈S

|Freq1(x,y)−Freq2(x,y)|, (10)

where S is a set of coordinates within the overlapped area, and Freq1

and Freq2 represent the frequency maps of the two fingerprints F1

and F2, respectively.

3. EXPERIMENTS AND DISCUSSION

The performance of the proposed fingerprints mixing approach was
tested using two different datasets. The first dataset was taken
from the West Virginia University (WVU) multimodal biometric
database [2]. A subset of 300 images corresponding to 150 fingers
(two impressions per finger) was used. The second dataset was the
FVC2000 DB2 fingerprint database containing 110 fingers with 8
impressions per finger (a total of 880 fingerprints). The VeriFinger
SDK was used to generate the normalized fingerprint images and
the matching scores. Also, an open source Matlab implementation
[11] based on Hong et al.’s approach [8] was used to compute the
orientation and frequency images of the fingerprints. In order to es-
tablish the baseline performance, for each finger in each dataset, N
impressions were used as probe images and an equal number were
added to the gallery (N = 1 for the WVU dataset and N = 4 for the
FVC2000-DB2). This resulted in a rank-1 accuracy of ∼ 100% for
the WVU dataset and ∼ 99.7% for the FVC2000 dataset. The EERs
for these two datasets were 0% and 1.4%, respectively. With regards
to mixing fingerprints for de-identification, the following questions
are raised:

1. What impact does mixing fingerprints have on the matching
performance, i.e., can two mixed impressions pertaining to the same
identity be successfully matched?

Figure 6: Examples of mixing fingerprints where F1 and F2 are fin-
gerprints from the FVC2000 and WVU datasets, respectively.

2. Are the original fingerprint and the mixed fingerprint corre-
lated? It is essential to assure that the proposed approach prevents
identity linking, by preventing the possibility of successfully match-
ing the original print with the mixed print.

3. Does mixing result in cancelable templates? In case a stored
fingerprint is compromised, a new mixed fingerprint can be gener-
ated by mixing the original with a new fingerprint. The new mixed
fingerprint and the compromised mixed image must be sufficiently
different, even though they are derived from the same finger. An-
other way of looking at this is as follows: if two different finger-
prints, F1 and F2, are mixed with the same fingerprint Fm, are the
resulting mixed fingerprints, M1 and M2, correlated? From the per-
spective of security, they should not be correlated.

• Experiment 1: The purpose of this experiment was to investi-
gate the impact of the proposed approach on the matching per-
formance. Therefore, fingerprints from FVC 2000-DB2 were
de-identified by mixing them with fingerprints from the WVU
dataset. For each fingerprint in FVC 2000-DB2 noted by F1, its
compatibility measure with each fingerprint in the WVU dataset
(300 images of 150 subjects) was computed using Equation (7)
with α = 0.6 and γ = 0.4. Based on the computed compatibil-
ity measures, the spiral component of F1 was combined with the
continuous component of the most compatible fingerprint image
F2 in the WVU dataset, resulting in the mixed fingerprint MF1.
Figure 6 shows examples of mixed fingerprints. Because there
are 8 impressions per finger in FVC2000-DB2, the mixing pro-
cess resulted in 8 impressions per mixed finger. Four of these
mixed impressions were used as probe images and the rest (four
impressions) were added to the gallery set. The obtained rank-1
accuracy was ∼ 81% and the EER was ∼ 9%. This indicates
the possibility of matching mixed fingerprints. Currently, ways
to further improve the rank-1 accuracy of mixed fingerprints is
being examined.

• Experiment 2: In this experiment, the possibility of exposing
the identity of the FVC2000-DB2 fingerprint image by using
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the mixed fingerprint images was investigated. The mixed fin-
gerprints MF1 (8 impressions per finger) were matched against
the original images in FVC2000-DB2. The resultant rank-1 ac-
curacy was less than 30% (and the EER was more than 35%)
suggesting that the original identity cannot be easily deduced
from the mixed image.

• Experiment 3: The purpose of this experiment was to investi-
gate if the proposed approach can be used to cancel a compro-
mised mixed fingerprint and generate a new mixed fingerprint
by mixing the original fingerprint with a new fingerprint. To
evaluate this, the 8 impressions of one single fingerprint in the
FVC2000-DB2 database were selected. Next, this fingerprint
was mixed with each of the 150 fingers in the WVU dataset.
This resulted in 150 mixed fingerprints with 8 impressions per
finger. Four of these mixed impressions were used as probe im-
ages and the rest (four impressions) were added to the gallery
set. Thus, each image in the probe set was compared against
all images in the gallery set in order to determine a match. A
match is deemed to be correct (i.e., the probe is correctly iden-
tified) if the probe image and the matched gallery image are
from the same finger. In the resulting experiments, the rank-1
identification accuracy obtained was 89%. The reasonably high
identification rate suggests that the 150 mixed fingerprints are
different from each other. This means, the fingerprint from the
FVC2000-DB2 database was successfully “canceled” and con-
verted into a new “identity” based on the choice of the finger-
print selected from the WVU database for mixing.

• Experiment 4: In this experiment, two different fingerprints
from FVC2000-DB2, F1 and F2, were mixed with each of the
150 different fingers in the WVU dataset. This resulted in two
set of mixed fingerprints - one based on F1 and the other based
on F2. Matching these two sets against each other resulted in a
rank-1 accuracy of 5% and an EER of 45%. This suggests that
two different fingerprints mixed with a common fingerprint can-
not be easily matched against each other. This further confirms
the cancelable aspect of the proposed approach.

4. CONCLUSIONS

In this work, it was demonstrated that a fingerprint can be de-
identified by mixing it with another fingerprint. To mix two finger-
prints, each fingerprint is decomposed into two components, viz.,
the continuous and spiral components. After aligning the compo-
nents of each fingerprint, the continuous component of one finger-
print is combined with the spiral component of the other fingerprint
image. Experiments on two fingerprint databases show that (a) the
new mixed fingerprint can potentially be used for authentication,
(b) the original fingerprint cannot be easily matched with the mixed
fingerprint, (c) the same fingerprint can be used in various appli-
cations and cross-matching between applications can be prevented
by mixing the original fingerprint with a different fingerprint, and
(d) mixing different fingerprints with the same fingerprint resulted
in different identities. This work is preliminary and, hence, a more
formal analysis of the security aspect is necessary. Further work is
required to enhance the performance due to mixed fingerprints by
exploring alternate algorithms for selecting and mixing the different
pairs.
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