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ABSTRACT 

Mel-frequency Cepstral coefficients are widely used for fea-

ture extraction in speech recognition systems. These features 

use Mel-scaled filters. A new filter-bank based on dependen-

cies between frequency components and phoneme character-

istics is proposed. F-ratio and mutual information are used 

for this purpose. A new filter-bank is designed in which fre-

quency resolution of sub-band filters is inversely propor-

tional to the computed dependency values. These new filter-

bank is used instead of Mel-scaled filters for feature extrac-

tion. A phoneme recognition experiment on FARSDAT Per-

sian language database showed that features extracted us-

ing the proposed filter-bank reach higher accuracy 

(63.92%) compared to Mel-scaled filter-bank (62.37%).  

1. INTRODUCTION 

Speech recognition has become an important part of many 

commercial systems from domestic appliance control to sim-

ple text entry systems. Efficient spectral and temporal repre-

sentation of phonetic information embedded in speech waves 

is an important step of speech recognition systems. The Mel 

frequency cepstral coefficients (MFCCs) are one of the most 

prominent features for representing spectral characteristics of 

the speech signal. It is observed that higher frequency re-

gions of the speech spectrum contain less phoneme discrimi-

native information than low and medium frequency bands 

(below 3 KHz) [2]. The Mel frequency scale is an auditory 

scale consistent with this fact and it is used to extract the 

MFCCs. The frequency resolution of sub-band filters used to 

extract features in this manner is a decreasing function of 

frequency. In other words, it is assumed that a higher fre-

quency component will always contain less information for 

discriminating between phonemes than a lower frequency 

component. Also, the frequency resolution of the Mel scale 

decreases in an exponential manner, which may not be true 

of the phoneme discriminative information embedded in 

speech. To solve this issue a frequency scale based on the 

dependencies between frequency components and phoneme 

characteristics is proposed. Statistical Fisher’s F-ratio and 

Mutual Information measurements are used to measure this 

dependency on the FARSDAT database. Using this informa-

tion, a non-uniform filter bank is designed for feature extrac-

tion. 

The rest of this paper is organized in the following man-

ner. Section 2 describes the Mel-scale and the process of 

computing MFCCs. Section 3 uses statistical and information 

theoretical methods to measure the dependencies between 

frequency components and phoneme characteristics. Then 

the proposed non-uniform filter bank is discussed. Experi-

mental results are presented in Section 4 followed by conclu-

sions and future work in Section 5. 

2. MEL-FREQUENCY CEPSTRAL COEFFICIENTS 

Features extracted for speech recognition need to emphasize 

phonetic information and attenuate individual differences. 

Short-term Cepstral features have proven successful for this 

task. Cepstral coefficients may be derived from Mel-

frequency log energies, or perhaps linear prediction coeffi-

cients. The former has proven more successful for robust 

speech recognition. 

2.1 Feature Extraction 

The Mel scale, proposed by Stevens, Volkman, and New-

man in 1937, is the result of a numeric approximation and 

is based on psycho-acoustical experiments over many lis-

teners. Simply put, the frequency components in each filter 

are stated to be perceived as equal frequencies by listeners. 

The relation between the frequency and Mel-scale is given 

by [5]: 

 � = 2595���	
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�
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A Mel-scaled filter-bank with 40 filters covering the fre-

quency range of 0 to 5512 Hz is shown in Fig. 1. 

2.2 MFCC computation 

For computing the MFCCs, speech signal is broken into 

overlapping frames and coefficients are derived for each 

frame of speech. The signal is pre-emphasized by applying 

the first order differential equation to enhance the higher 

frequencies of speech. In order to attenuate discontinuities 

at frame edges the samples in each frame are tapered by 

applying the Hamming windows. The length of the frames 

is chosen to correspond to the average duration for which 

the stationary assumption of speech is true; i.e. 20 to 30 

milliseconds. 

The Fourier transform is applied to the samples using an 

N-point Fast Fourier Transform (FFT). The magnitude of 

the spectrum is taken which is symmetric and thus half the 

points are sufficient. A bank of Mel-scaled band-pass filters 

is then used to  attenuate  fast changes in the  spectrum  and 

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011  -  ISSN 2076-1465 2142



 

Figure 1 – A Mel-scaled filter-bank with 40 filters 

 

Figure 2 – A uniform-scaled filter-bank with 40 filters 

estimate its envelope. Each filter is defined by its shape and 

frequency localization. The logarithm of the envelope mul-

tiplied by 20 gives the spectral vectors in dB. 

Cepstral vectors are derived through a discrete cosine 

transform (DCT) of each log-spectrum vector: 
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where is the number of log-spectrum coefficients each de-

noted by  and   is the number of Cepstral coefficients. An 

energy term and first and second order derivatives are usu-

ally appended to the above coefficients. 

3. PHONEME DISCRIMINATIVE FREQUENCIES 

To investigate the dependencies between each frequency 

region and phoneme characteristics, uniform-scaled filters 

are used to derive the energy spectrum. Each filter is a trian-

gle-shaped band-pass filter distributed uniformly throughout 

the frequency spectrum. Then, the dependencies will be 

computed. In this paper, we describe two methods for meas-

uring dependencies between frequency components and 

phoneme characteristics. The first one is mutual information 

which is based on calculating entropy values of certain vari-

ables. The second one is F-ratio which is a statistical 

method. 

3.1 Uniform-scaled filters 

A filter-bank with uniform-scaled filters is used for comput-

ing the power spectrum. Later, these values will be used to 

investigate the effect of each frequency region on discrimi-

nating phonemes. 

Each filter is a triangle-shaped band-pass filter distrib-

uted uniformly throughout the whole frequency spectrum. A 

filter-bank with 40 uniform-scaled filters is show in Fig. 2 

3.2 F-ratio for measuring the discriminative ability of 

frequency components  

One of the methods which is usually used for finding the 

discriminative ability of a certain feature is F-ratio [2]. Us-

ing F-ratio, the dependency between each frequency band 

and phoneme statistics is computed. Each frequency band 

dependency will be computed independent of other fre-

quency bands. The value computed here represents the con-

tribution of each frequency region to phonemic discrimina-

tive information. The F-ratio is defined as [1]: 
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where ��
�
 is energy of one frequency for �th frame of pho-

neme with � = 1 … � and � = 1 … � and j=1…M.  
��and � are averages of one frequency band for ith phoneme  

and for all phonemes, respectively. �� and � are defined as 

below: 
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F-ratio is the ratio of between-group variability (inter-

phoneme variance) to within-group variability (intra-

phoneme variance) in a given frequency band. So, the larger 

the value of the ratio for a specific frequency band, the more 

phoneme discriminative information that frequency band has. 

3.3 Mutual Information for measuring dependencies  

One of the methods for measuring the dependencies between 

random variables is mutual information [4]. The mutual in-

formation between two variables is defined as: 

 ( ) ( ); ( | )I Y P H Y H Y P= −  (5) 

where Y and P are frequency band variable and phoneme 

class, respectively. H(.) is the entropy function, defined as: 
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According to Eq. 5, �(�) is the entropy of a specific fre-

quency band, and �(�|!) is the conditional entropy of a 

frequency band, given a specific phoneme. Simply put, mu-

tual information of frequency band energy and a specific 

phoneme equals the reduction of the uncertainty (entropy) of 

that frequency band given a specific phoneme. If a frequency 

band has no phonemic information, �(�|!) equals �(�) 

and according to Eq. 5, "(�; !) will be zero, indicating that 

frequency band has no phonemic information. For computing 

"(�; !) we need to compute frequency band entropy and 

conditional entropy. Because these values are continuous, 

entropy should be computed using an estimation method. In 

this experiment, histogram estimation is used to calculate 

entropy and conditional entropy [3]. By using mutual infor-

mation, we can measure the dependency between phoneme 

class variable and a specific frequency band variable. 

3.4 Proposed filter-banks 

One way to incorporate the previous section’s results in de-

signing filter-banks with more phonemic discriminative in-

formation is to assign weights to each frequency band [1]. 

With this method, frequency bands with higher discrimina-

tive ability will be assigned higher weights, so their impact 

on the final features will be more dominant. Another way is 

to assign higher frequency resolutions to frequency bands 

with higher phoneme discriminative ability. This new fre-

quency scale can be used exactly in place of Mel-scaled fil-

ters in MFCC feature extraction process. The later approach 

is used in this experiment.  

In real applications, the dependency measurement  using 

F-ratio is easier than that  using mutual  information.  In this  
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Figure 3 – The computed dependency value using F-ratio and mu-

tual information 

 
Figure 4 – The computed dependency value using F-ratio using all 

phonemes and only vowels 

 

study, mutual information was also implemented to measure 

the dependencies but as shown in the Section 4, the results 

were worse than that of F-ratio. It can be considered as a 

measure to check the correctness of F-ratio algorithm. As it is 

shown in Fig. 3, both of the dependency measurement results 

are a little different but have a similar trend. The measured 

dependencies show us the fact that frequencies below 200 Hz 

and above 4000 Hz contain no phonemic information. This 

will somewhat attenuate the differences between speakers 

since the human pitch frequency is usually less than 300 Hz 

[1]. The proposed approach assigns higher frequency resolu-

tion for middle frequencies compared to Mel-scale. This is 

obviously because of the higher discriminative power of 

these frequencies, especially for vowels. One of the most 

important features that is relevant in discriminating between 

vowels are formant frequencies. The first three formants are 

usually in the range of 200 Hz and 3500Hz. These three for-

mants have the most discriminative power for vowels. The 

higher formants are less relevant to the uttered phone and are 

more relevant to speaker characteristics [7]. As evident from 

Fig. 3, the region between 200Hz and 4000Hz has gained a 

reasonably high score. This is consistent with these facts, 

meaning that the formant frequency range is an important 

frequency region in discriminating between phonemes. In 

computing the dependency values in Fig. 3, all phonemes are 

considered. In Fig. 4 only 6 Persian vowels are considered 

for computing the dependency values using F-ratio method. 

The important frequencies in discriminating between vowels 

can be seen from Fig. 4. As can be seen, the high scores are 

concentrated around formant frequency regions (even more 

compared to dependency values for all phonemes). This is 

clearly because Persian vowels can easily be discriminated 

between by using only three formant frequencies. In Fig. 4, 

the trends of both curves are almost alike, but for the fre-

quencies less than 1000Hz there exists a strong peak in the 

phoneme  curve. This is  because  low  frequencies  have  a 

 
Figure 5 – The designed filter-bank based on F-ratio values 

 

 
Figure 6 – Comparison of the three warping schemes 

 

high discriminative power for discriminating between voiced 

and unvoiced phonemes. 

As stated earlier, each frequency band is assigned a fre-

quency resolution according to phonetic information content 

by measuring the dependency between that frequency com-

ponent and phoneme characteristics. Each sub-band filter’s 

bandwidth will be assigned inversely proportional to the de-

pendency measurement value (here, the F-ratio value). As a 

result, the frequency resolution of a region with high F-ratio 

value will be increased. The designed filter-bank is shown in 

Fig. 5. As one can see, it is neither uniform nor exponential 

in appearance. In Fig. 6, a frequency warping of uniform-

scale, Mel-scale and the proposed method is plotted. It is 

similar to Mel scale in that both will assign high resolution to 

low frequencies and low resolution to high frequencies. But 

unlike Mel scale, the designed frequency resolution is not a 

strict decreasing function of frequency.  As it is shown in Fig. 

5, the proposed approach assigns higher frequency resolution 

for middle frequencies compared to Mel-scale. 

Since the filter-banks are designed based on dependency 

values of each frequency component, it is expected that the 

features extracted using these new filter-banks, will improve 

the performance of phoneme recognition and as a conse-

quence, improve the performance of speech recognition. 

4. EXPERIMENTS AND RESULTS 

For measuring the F-ratio values, FARSDAT database is 

used. This database is phonetically labelled. First, all samples 

from each phoneme are extracted from the database and a 

filter-bank with 50 uniform overlapping filters is applied to 

them. The F-ratio formula is easily computed, resulting in F-

ratio values for each of the 50 filters. Mutual information is 

computed in the same way. A filter-bank is designed based on 

the computed dependency values. Then the feature vectors 

are computed using these newly designed filters. First, a 
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framing of 25 ms with 10 ms shift is done. For each frame, a 

hamming window is applied and FFT is computed. A filter-

bank consisting of 40 non-uniform sub-band filters is used to 

compute the power spectrum. 13 first Cepstral coefficients 

are computed. Energy is also added to the features. Deriva-

tion and acceleration of the features are also appended to the 

feature vectors. For training and testing purposes, FARSDAT 

(non-telephony) database is used. It contains 100 different 

speakers and for each speaker, about 15 minutes of read 

speech is recorded. In this experiment, we used all the re-

cordings of 50 speakers. Speech from 35 speakers is used for 

training the phoneme models and the speech from other 15 

speakers is used for testing the models. Any speakers’ data 

which is used in training is not included in testing. 

FARSDAT is phonetically hand-labelled. 56 phonemes are 

specified in FARSDAT. In our experiments, only 30 common 

phonemes are considered. This is because the rest of them 

where mostly allophones and did not have sufficient data for 

training purposes. 

Each phoneme is modelled by a 3-state hidden Markov 

model (HMM) with Gaussian mixture distributions each con-

sisting of 16 mixtures. Phoneme models are trained for 12 

iterations. The HMM toolkit (HTK) is used for this purpose 

[6]. 

A comparison is made between phoneme recognition ac-

curacy of Cepstral coefficients extracted using uniform, Mel-

scaled and the proposed filters. The result is shown in Table 

1. Obviously MFCC features result in better accuracy than 

uniform-scaled Cepstral coefficients. As expected, features 

computed by using the proposed frequency scale, result in a 

better phoneme accuracy compared to MFCC features. Sur-

prisingly, the frequency scale computed using Mutual Infor-

mation resulted in a performance less than the F-Ratio fre-

quency scale. This may stem from the fact that when comput-

ing Mutual Information for continuous values, an estimation 

step is performed, which may result in poor dependency 

value computation. As can be seen in Fig. 3, the Mutual In-

formation curve is smoother compared to the F-ratio curve, 

which may show that Mutual Information has lower ability to 

detect the exact dependencies compared to F-ratio.  

In another experiment, phoneme recognition accuracy 

was tested on only 6 Persian vowels to see the effect of this 

method on vowel recognition accuracy. A new filter-bank 

was designed based on the dependency values shown in Fig. 

4 (only vowels). The vowel accuracy is shown in Table 2. 

The 2.5% increase in phoneme recognition accuracy is 

promising since the practical upper limit for phoneme recog-

nition accuracy is very low (about 70%).  

TABLE I.  PHONEME RECOGNITION ACCURACY 

Frequency scale Phoneme Accuracy 

Uniform-scaled 55.20 % 

Mel-scaled 62.37 % 

Based on MI 63.33 % 

Based on F-ratio 63.92 % 

TABLE II.  VOWEL RECOGNITION ACCURACY 

Frequency scale 24 filters 40 filters 

Uniform-scaled 73.67 % 71.24 % 

Mel-scaled 79.34 % 84.10 % 

Based on F-ratio 83.37 % 89.44 % 

 

In addition to the above experiments, assigning weights 

to each Mel-scaled filter according to the F-ratio curve (in-

stead of new frequency resolution) was also performed. 

These set of features resulted in accuracy almost the same as 

MFCCs (only a slight increase was achieved).  

5. CONCLUSION 

In this study, a new filter-bank was designed based on the 

dependencies between frequency components and phoneme 

characteristics. Using this new filter-bank, feature vectors 

were extracted and phoneme recognition accuracy was com-

puted. The phoneme recognition accuracy showed that fea-

tures extracted using the proposed filter-bank reached higher 

phoneme recognition accuracy (63.92%) compared to Mel-

scaled filter-bank (62.37%). 
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