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ABSTRACT

Scanning large bandwidths (spectrum sensing) pushes to-
day’s analog hardware to its limits since periodic sampling at
Nyquist rate with sufficient resolution is often prohibitively
complex. In this paper, we consider a scenario where the sig-
nal to be acquired is sparse in the frequency domain (e.g.,
spectrum sensing in cognitive radio applications) and we are
interested in identifying the sparse support of the signal. For
this type of applications, we describe a new analog-to-digital
converter (ADC) architecture that acquires unequally spaced
samples based on a slope ADC, which is one of the least
complex ADC architectures available. For the signal recon-
struction, we employ algorithms from compressed sensing
for the recovery of the dominant spectral components. The
performance of the proposed design is compared to more tra-
ditional designs with comparable or higher hardware com-
plexity.

1. INTRODUCTION

Spectrum sensing, i.e. the identification of occupied fre-
quency bands, is a task which appears in many applications.
One of them is cognitive radio (CR) [3], which allows to
reuse free bands (white spaces) in the spectrum of licensed
users. CR can increase spectrum utilization especially when
the spectrum is only sparsely used. In order to transmit on
a dynamically assigned frequency, one has to verify that no
interference is caused to any licensed user which is currently
transmitting. Identifying unused frequency bands by scan-
ning large bandwidths is a challenging task when bandwidths
in the GHz range are to be observed. Traditional approaches
either split the signal among a number of narrow-band de-
tectors by a bank of passband-filters or the wideband signal
is sampled directly at Nyquist rate by a high-speed ADC.
Both techniques result in large, expensive, and power hungry
hardware implementations.

In order to reduce the effort for spectrum sensing, ad-
ditional constraints on the signal must be introduced. In this
paper, we assume that the observed signal is sparse in the fre-
quency domain. Hence, in a given time window only a small
number of bands (frequencies) are occupied!. Our goal is to
find a hardware implementation that is as simple as possible,
but can still reliably detect all occupied frequency bands.

A promising approach to exploit the sparsity assumption
for reducing the complexity of the sampling process comes
from the area of compressed sensing (CS) [2]. In essence,
the corresponding recent results explain why and how sig-
nals with a sparse representation in some domain can (un-
der certain conditions) be sampled below their Nyquist rate

'In many CR settings this will be a valid assumption given the measured
low spectrum utilization.
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and how the original signal can be reconstructed. Unfortu-
nately, straightforward periodic undersampling is not possi-
ble. Hence, new sampling hardware (analog-to-information
converter) is required to realize the proper sampling process.
The construction of such hardware is far from trivial since
it requires new ideas and topologies that are quite different
from the well studied traditional ADCs.

Prior work The related prior work that is concerned with
the construction of reduced-complexity hardware for sam-
pling and recovering of frequency-sparse signals can be di-
vided into two approaches:

The first approach is to sample the time-domain signal in
a basis that is different from the canonical basis. To this end,
special analog frontends are employed to perform the projec-
tion of the incoming signal onto a random basis. For exam-
ple, the random demodulator in [10] first multiplies the sig-
nal with a high-frequency pseudo-noise sequence, accumu-
lates the result in an integrator, and then samples at a reduced
frequency. A parallel random demodulator was proposed in
[11] where the signal is projected onto multiple Bernoulli
waveforms in the analog domain. Similarly, the modulated
wideband converter (MWC) [6] uses low-pass filters instead
of integrators and periodic high-frequency waveforms. In
both cases, the mixing with high-frequency analog signals
is practically feasible. However, the additional analog fron-
tend also adds non-negligible area overhead and complicates
the analog design, which is undesirable, especially in mod-
ern process technologies where the trend is toward shifting
complexity from the analog domain to the digital signal pro-
cessing.

The second approach is to exploit the fact that a signal
that is sparse in the frequency domain can be reconstructed
after acquiring it in the time domain using unequally spaced
samples. The main difficulty lies in the fact that random sam-
pling may occasionally lead to samples that are very closely
spaced in time which requires hardware that can also handle
very short sampling intervals even though the average sam-
pling rate is well below the worst case. Possible implementa-
tion strategies for the random sampling approach are for ex-
ample described in [4] and [9] where the authors propose two
prototypes: one uses a bank of low-rate ADCs with shifted
starting points, the other one utilizes capacitors to store ana-
log values until they are sampled by a low-rate ADC. Unfor-
tunately, both approaches require non-trivial additional cus-
tom hardware which, in the end, is partially underutilized to
enforce an irregular sampling grid.

Contributions & Outline In this work, we describe a new
approach to acquire signals that are sparse in the frequency
domain using random sampling. Our solution comprises a
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very simple sampling hardware and a slightly adapted CS re-
construction algorithm for sparse signal recovery. In partic-
ular, our ADC is based on a small modification of the well-
known slope ADC and achieves a 100% hardware utilization
to maximize the number of unequally-spaced samples that
can be acquired without adding complexity to the sampling
process. The rest of the paper is organized as follows: We
first briefly review the basics of sparse signal recovery and
introduce ideal random sampling with an adapted reconstruc-
tion algorithm in Sec. 2. In Sec. 3, we explain how random
sampling can be implemented in a very simple and hardware-
efficient way. Simulation results and a comparison to related
techniques are shown in Sec. 4 and conclusions are drawn in
Sec. 5.

2. RANDOM SAMPLING

CS provides a framework with reconstruction algorithms and
convergence criteria that allows to reconstruct sparse or com-
pressible signals from far fewer measurements than the di-
mension of the unknown signal suggests [1, 2]. A signal is
called K-sparse if it can be represented by K coefficients in
a given basis. If x € CM is the sparse representation of this
signal, only K out of its M coefficients have non-zero values.
For a measurement vector y € CV with potentially N < M,
and the measurement matrix (or dictionary) ® € CN*M one
can reconstruct x from y = ®x if ® fulfills certain condi-
tions on the restricted isometry property. Columns of ® are
called atoms or dictionary elements and should be incoherent
to fulfill the above property. With noise-free measurements,
the signal x can be reconstructed by finding the sparsest pos-
sible solution which fulfills y = ®x according to

% = argmin,||x||o, subject to y = ®x. (1

A large number of algorithms have been proposed to solve
the reconstruction problem in (1). There are mainly two
classes: convex optimizers, which minimize the /;-norm in-
stead of the /p-norm, and greedy algorithms which approach
the optimal solution through iterative procedures. Many al-
gorithms also work for noisy measurements where the recon-
struction problem is not solved with equivalence but within
an error bound ||®x —y||*> < e.

2.1 Ideal Random Sampling

In the spectrum sensing application considered in this paper,
the continuous time signal y(¢) is assumed to be band-limited
to a frequency f with a sufficiently sparse discrete frequency
domain representation x. The measurements y are taken
in the time domain with a time-resolution Ty < 1/fy with
Jfv = 2f being the Nyquist frequency. For the conventional
periodic sampling, the measurement matrix ® corresponds to
a full discrete Fourier transform (DFT) matrix with N = M.

Yn :y(t)|t=k,,Toa ky € {13M}3 kn > ky—1 2)
n=1,....N

o 1 . (knfl)(mfl)
Py = X (JMM) 3)
m=12,....M

By reducing the number of measurements, i.e., N < M, the
signal y(f) becomes undersampled with an effective sam-
pling rate of foir = N/(MTy). If the sampling instances k,, are

selected randomly from the grid with resolution 7, the mea-
surement matrix created according to (3) fulfills the criteria
for reliable signal recovery with high probability provided
that a sufficiently large number N of time domain samples is
collected [1].

2.2 Reconstruction of Real-Valued Signals

Since we consider a real-valued time domain signal, the cor-
responding spectrum x € CM is conjugate symmetric. For
optimal signal reconstruction, this knowledge must be incor-
porated into the reconstruction algorithm. To this end, real
and imaginary parts of x are first separated. Since x; and
Xp1/2+1 are real-valued, we end up with M /24 1 real values
and M/2 — 1 imaginary values. The total number of degrees
of freedom is thus M. Since the two real-valued components
x1 and xp7/>, 1 have no practical significance, we skip them
for the sake of simplifying the notation. The new real-valued
vector % € R¥~2 is constructed as

X = [RC{XQ} Re{X3} ... Re{xM/z}
Im{x,} Im{x3} ... Im{xp; o }]"" “)

The corresponding measurement matrix, for which y = ®x,
is also real-valued.

-2 cos ZEW) if1<m<%

& VN
nm = , . (kn—1)(3M—m) e M
Zy Sin 271'”;> if7<m<M-2

&)
For the reconstruction, we use the well-known Compres-
sive Sampling Matching Pursuit (CoSaMP) algorithm [8].
This iterative greedy algorithm chooses in each iteration the
2K best fitting atoms and then performs a least squares opti-
mization in the sub-space spanned by these atoms. Only the
K best atoms are kept and will be used as a starting point for
the next iteration, where new atoms can be added and obso-
lete ones can be discarded.
To account for the dependency of the two elements
Xn, Xpr/2—14n» Tepresenting the real and imaginary parts of
the same discrete frequency component, we modify the orig-
inal algorithm to always select the two corresponding com-
ponents together. To this end, we perform the selection us-
ing the magnitude of the complex coefficient, i.e. the sum

of the two squared components |, /iﬁ —&—X% M/t Thus, 2K

component-pairs are selected in the first step and are then
reduced to K component-pairs.

3. SLOPE ADC

All hardware architectures of random samplers presented so
far require some operations in the analog domain before sam-
pling. A promising hardware architecture, which comes with
no additional overhead, can be developed from the traditional
slope ADC, which is briefly described here. The principle of
a slope ADC is very simple: A linear voltage slope is gener-
ated as a reference signal and is compared to the input volt-
age. A counter measures the time until the reference slope
reaches the level of the signal. The reference slope is peri-
odically reset to its baseline as illustrated in the upper half of
Fig. 1.

The advantage of this architecture is its simplicity in
hardware. Basic building blocks are only a current source,
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Figure 1: Slopes generated for given input signal (red) in a
traditional slope ADC (top) and a RSS-ADC (bottom)

a capacitor, a comparator, and a counter (Fig. 2). Disad-
vantages are its slow speed, especially for high resolutions,
and - in traditional systems - the unevenly spaced sampling
instances. Nevertheless, this ADC architecture is getting
particularly attractive for nanometer-scale CMOS converters
due to a higher energy efficiency compared to flash ADCs.
For example, the design in [7] achieves 1 MS/s with 9 bit
resolution and 14 uW power dissipation in a 90 nm CMOS
technology.

In a slope ADC, the counter clock period T¢ is the small-
est resolvable time. When the reference slope and the input
signal intersect, the next integer multiple of T¢ is recorded.
In order to achieve a sampling rate of fg > fy with a reso-
lution of B bits, the clock frequency fc = 1/T¢ must be set

to
fe=0@F=1)fs.

The requirements on the clock frequency of the counter and
the bandwidth of the comparator thus increase exponentially
with the resolution B, which requires the comparator to run
significantly above the intended sampling frequency fs. In
this architecture, the effects of unevenly spaced samples need
to be compensated by digital postprocessing. For example by
using iterative lowpass filtering [5], the sampling instances
can be fit into a periodic grid again. However, this approach
requires fs to be significantly above the Nyquist rate.

3.1 Random Sampling Slope ADC (RSS-ADC)

The proposed RSS-ADC differs in two points from the con-
ventional slope ADC. First, a more powerful digital postpro-
cessing using CS reconstruction algorithms is applied and
second, the slope reset procedure in the analog frontend is
modified.

Instead of regarding the jitter around the fs-periodic sam-
pling grid as an imperfection which must be corrected, the
uneven sampling points can be exploited when they are inter-
preted as randomly spaced samples. As presented in Sec. 2,
random sampling is a method to enable the reconstruction
of a sparse signal. As a first step, the digital postprocess-
ing of the conventional slope ADC is therefore enhanced to
deal with irregular timing and frequency sparsity. As for the
random sampler in Sec. 2, CS algorithms are a proven tool
to reconstruct signals under these conditions. Thus, we re-
gard this CS-aided slope ADC as an efficient and practical
implementation of a random sampler.

InputSignal | -
Counter

Ramp generator

Reset Clock

Figure 2: Schematic of a slope ADC

To further randomize the distribution of the sampling
points, we propose to remove the periodicity of the reset sig-
nal. To this end, in the RSS-ADC, the reference slope is reset
right after a sample has been acquired (see Fig. 1, bottom).
This requires only trivial adaptations in the reset control cir-
cuitry and will not affect the requirements of the analog com-
ponents. As a greatly welcome side effect, more samples can
be acquired (fer > fs) at no additional cost.

However, contrary to ideal random sampling, the sam-
pling instances are signal-dependent. More samples tend to
be acquired when the signal is near the starting point of the
reference slope than when the signal is at the peak of the
slope. The effect of this non-ideality will be studied in Sec. 4
by means of numerical simulations. Samples exceeding the
range of the reference slope can be saturated or, alternatively,
also be skipped. Skipping is handled well by CS algorithms
but decreases the number of measurements.

3.2 CS Reconstruction

The reconstruction of the sparse frequency domain signal
from the unevenly spaced measurements is done with the
same algorithms as in the case of ideal random sampling de-
scribed in Sec. 2. Only the measurement matrix ¢ has to be
constructed such that it fits the RSS-ADC hardware.

The lowest possible sampling interval is given by the pe-
riod of the counter clock Ty = T¢. The sampling instances k;,
are determined by the counter states ¢, at which the reference
slopes were reset. The series of sampling times in multiples
of Ty is then given by

ky, = i Cyl- (6)

n'=1

New measurements are acquired until the end of the sam-
pling window is reached at t = MTy. The number of acquired
measurements N is signal dependent and can not be deter-
mined in advance. The measurement matrix ® can be con-
structed using (2) and (5). Assuming ideal reference slopes,
the measurements y, are determined according to

Yn = Cpm +my. 7

The increment m in one clock period T¢ of a reference slope
raising from —A to A with a resolution of B bits is given by

me= — . 8)

The initial offset is my = —A —m/2. In case the signal is
above A or below —A, we set x = +A + %
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Figure 3: Perfect support recovery rate of the RSS-ADC
compared to random sampling for varying sparsity and ramp
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Figure 4: Effective sampling rate of the new RSS-ADC and
the traditional slope ADC

4. SIMULATIONS

In this section, the performance of the new RSS-ADC is eval-
uated and compared to other sampling schemes. In all simu-
lations, a signal sparse in the discrete Fourier domain is gen-
erated by randomly choosing frequency bins and assigning
random phases and amplitudes. The phase is chosen uni-
formly at random while the amplitudes are normal distributed
with a high mean value to prevent too small components. In
our simulations we set the mean amplitude value to 10 times
its standard deviation. The signal is then transformed into an
oversampled time domain representation. The perfect sup-
port recovery rate is used as a quality metric. It is defined by
the ratio of successful scans to the total number of scans in
a Monte Carlo simulation. A scan is called successful when
all the occupied frequency bins were identified correctly.

4.1 Resolution/Speed Trade-Off

Fig. 3 shows the perfect support recovery rate of a RSS-ADC
with varying ramp resolution (B) in bits and varying spar-
sity (K/M) while f¢ and the comparator bandwidth are fixed.
Thus, all the systems simulated for this plot require the same
hardware complexity. The counter clock frequency is set to
three times the Nyquist frequency (fc = 3fy) and the num-
ber of discrete frequencies is set to M = 512. By sweeping
the ramp resolution (number of bits B), not only the quanti-
zation granularity is changed but also the effective sampling
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Figure 5: Comparison of traditional to CS-aided slope ADC
and RSS-ADC with fixed sparsity. Top: perfect support re-
covery rate. Bottom: effective sampling rate

rate. The slope m gets less steep as the number of bits B in-
creases (8) and thus it takes longer to acquire a sample. This
leads to fewer but more precise measurements. The top graph
in Fig. 3 depicts the performance of the new RSS-ADC.

The simulations show that with a resolution of B = 3 bits,
the best support recovery rate is achieved. While stronger
undersampling of a signal is possible with higher ramp res-
olution, this is not the main goal of this architecture; the ef-
ficient utilization of the hardware resources is far more im-
portant. Since the hardware costs remain constant and the
performance is getting worse, higher resolution with stronger
undersampling is not desired in the RSS-ADC.

4.2 Comparison to Random Sampling

The bottom graph in Fig. 3 shows the support recovery rate of
an ADC whose samples are perfectly randomly distributed.
The number of samples is set to the same number as acquired
by the slope ADC that operates at the indicated ramp reso-
lution. Thus, both ADCs have the same effective sampling
rate ferr. The random samples are quantized with the given
number of bits. By comparing the two plots, the degrada-
tion of the support recovery rate due to the signal-dependent
sampling introduced by the RSS-ADC can be seen.

4.3 Comparison to Conventional Slope ADC

Fig. 4 shows the average number of samples acquired by
the conventional and the new RSS-ADC. At B = 3 bits and
fc =3 fn, the proposed ADC shows an average sampling rate
of more than 20% below the Nyquist frequency. Using the
conventional slope ADC with B = 3, only an undersampling
with factor f¢/(28 —1) = 0.43 fiy could be obtained and re-
construction would be more difficult.

A support recovery performance comparison of the tra-
ditional slope ADC to the CS-aided slope ADC and to the
RSS-ADC is shown in the upper part of Fig. 5. The most
important parameter determining the system complexity and
performance is the clock frequency fc. By sweeping fc
we compare the three ADCs with the same analog hardware
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complexity for a given fc. For all ADCs, we set a quantiza-
tion accuracy of B = 3 bits and M = 512. The comparison is
done at two different sparsity levels of K = 25 (~ 5% of M)
and K = 100 (= 20% of M).

In the traditional converter, the iterative low-pass filtering
method described in [5] is applied to the nonuniform samples
in order to recover the band-limited signal. An FFT is then
applied and the frequency components showing the K high-
est magnitudes are selected. As an intermediate step, also
the performance of a CS-aided slope ADC with full slopes
but a CS reconstruction algorithm instead of low-pass filters
is plotted here. This comparison shows the favorable effect
of CS-aided digital postprocessing without any adaptations
of the analog frontend. The last pair of curves shows the re-
construction performance of the proposed RSS-ADC includ-
ing fast slope reset and CS-aided reconstruction as a function
of fc. As illustrated at the bottom of Fig. 5, the RSS-ADC
increases the effective sampling rate compared to the con-
ventional slope ADC hardware. As shown in the upper part
of Fig. 5, this increased number of measurements allows to
further reduce the clock frequency f¢ required for successful
support recovery.

5. CONCLUSION

A modified slope ADC, which delivers irregular samples at
a high rate, was presented for sparse spectrum sensing. The
new random sampling slope ADC (RSS-ADC) uses a com-
pressed sensing reconstruction algorithm to take advantage
of the inherently irregular sampling process and resets the
slope right after the signal detection to increase both ran-
domness and sampling rate. For the CS reconstruction al-
gorithm, a version slightly adapted for real-valued signals of
the CoSaMP algorithm is used. The proposed RSS-ADC in-
creases the spectrum sensing performance compared to the
conventional slope ADC at no extra cost in analog hardware.

An issue not addressed in this paper is the recovery of
frequencies which are not on the discrete grid as assumed by
our model. Overcomplete dictionaries or subspace-based re-
covery methods are possible remedies and will be discussed
in future work.
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