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ABSTRACT

This paper examines the problem of estimating the average 
transmitted power, number and location of a multitude of 
sources in a wireless environment. In particular, based on 
measurements of the power received by sensors placed in 
known locations in space, a technique is developed employ-
ing the maximum likelihood criterion in order to assess the 
aforementioned characteristics of the transmitting sources in 
a shadow fading environment. In this work the estimator is 
described theoretically and also numerical results are pre-
sented through simulations that corroborate the theoretical 
claims in a scenario of practical interest. 

1. INTRODUCTION

Spectrum and energy efficiency is one of the main targets of 
next generation mobile radio technologies. Since the amount 
of broadband wireless users increases steadily and the use of 
wireless devices is getting commonplace nowadays, the fre-
quency spectrum is an increasingly scarce resource. Reallo-
cating the spectrum to different users is a complicated pro-
cedure and hence there is a need for a different approach in 
order to assure the sufficiency of the required spectrum 
bandwidth. Cognitive radio (CR) and cognitive wireless 
network technologies have been proposed as a new architec-
ture in order to guarantee acceptable management complex-
ity, enable networking among heterogeneous systems, and  
make use of the frequency spectrum more efficiently. An 
essential step before applying any cognitive algorithm is to 
build a system's Radio Environmental Awareness (REA). 
The ability to accurately characterize the operational envi-
ronment by identifying the presence of, classifying their 
constituent parts (waveforms, in particular), and locating 
radio frequency (RF) emitters in spatial terms is of great 
importance to all the applications. Currently emerging cog-
nitive radio systems and networks induce heavy require-
ments on REA for determining unused spectrum bands and 
utilize them in an efficient way [1]. 
 
A typical setting for building REA is to characterize the 
power profile at all frequency bands over a geographical 
area of interest at a particular time instant (possibly also 
dynamically in time). We will henceforth refer to it as Radio 
Interference Field Estimation (RIFE). RIFE can be accom-
plished by appropriately combining power measurements 

made by sensors distributed in known locations in this area 
of interest. Based on the type of processing performed to the 
obtained measurements, there exist mainly two categories of 
algorithms, namely those that explicitly account for potential 
RF sources (“indirect” methods) and those that obtain the 
RIFE without any source characterization (“direct” meth-
ods). An analytic explanation of the latter category can be 
found in [6] . 
 
Indirect methods are in general more accurate than the direct 
methods, at the price of requiring more computation. Fur-
thermore, they provide as an intermediate step information 
about the sources, a fact that can prove useful elsewhere in 
the system. Indirect methods may in general allow for in-
corporation of directional and/or extraneous position-
information for the various sources. They assume a specific 
propagation model, an assumption that can potentially be-
come though a liability in some cases and can introduce 
complexity in the process of searching for RF sources. More 
specifically, in [4] a methodology for solving a problem of 
restricted geometry can be found (in fact, the authors assume 
the sensors to be collocated and the sources to be suffi-
ciently far from the sensors). A methodology for a problem 
of arbitrary and unknown source locations is given in [3] 
where the authors model the lack of knowledge for the 
source locations by introducing a grid of candidate source 
locations and investigating the solution at each such candi-
date (and hence known) location. The techniques in [4] and 
[3] also differ in the adopted processing technique. In par-
ticular, [4] assumes a large number of measurements and 
derives an estimator based on the empirical behavior of 
those measurements (ie. the empirical eigenvalue distribu-
tion), whereas [3] forms an estimator based on the least-
square criterion. 
 
In this paper we develop an indirect method that obtains the 
RIFE by estimating the number, location and average power 
of the transmitting sources. In our technique the processing 
is based on the maximization of the likelihood function (ML 
criterion). Our technique is therefore one of arbitrary topol-
ogy and probabilistic processing on the obtained measure-
ments. In a similar setting, location and power estimation for 
a single source based on the ML criterion has been presented 
recently by[5].Our work can be viewed as a generalization 
for many (and unknown in number) sources of the work in 
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[5]. We consider a log-normal shadow fading environment. 
In fact, we consider a number of sensors measuring power 
and placed in known locations in space and investigate the 
probability of the obtained measurements conditioned to a 
specific scenario regarding the location, number and average 
power of the transmitting sources. We then maximize this 
conditional probability density function over all the different 
such scenarios. As it will be shown in the next paragraphs 
we avoid the straightforward exhaustive search for the best 
scenario among them. 

The problem of separating signal sources and identifying 
their number is a well known interesting problem. For a solu-
tion to it the reader is referred to Chung et al, [7]. In particu-
lar, this problem is harder when combined with the problem 
of power inference, as is the case in our work. In order to 
overcome the obstacle of the double source of uncertainty 
(ie. number and power) we introduce a grid of candidate 
source locations over the geographical area of interest, 
namely the area where the sources are actually expected to 
lie and investigate the existence of sources on the points de-
termined by this grid only. The resolution and coordinates of 
this grid of potential source locations is therefore critical and 
is subject to the desired level of estimation accuracy as well 
as the fading characteristics. We now investigate at every 
grid location whether some source is transmitting and if so, 
what is the average power. The introduction of this grid can 
be viewed as transforming the lack of knowledge for the 
power and location of sources to lack of knowledge of the 
sources' power only at the expense of increasing the number 
of unknowns. In order to reduce the number of unknown 
parameters the algorithm can be implemented to successively 
appropriately refine the resolution of the grid –in geographi-
cal areas where this is meaningful, ie. sensors are placed suf-
ficiently dense- in order to localize the sources and estimate 
their power.  

The rest of the paper is organized as follows. Section 2 pro-
vides a description of the adopted system model. Section 3 
presents the main contribution of this paper, namely a novel 
technique for estimating the number, power and location of 
transmitting sources within the geographic area of interest. 
In Section 4 we investigate numerically the performance of 
the estimation technique.  

 

2. THE SYSTEM MODEL 

We consider N sensors located in known places in the geo-
graphic area of interest measuring the power at this location 
and at a specific frequency bin and time instant. Let 

1,..., �� �

{1k�

 be the collection of these measurements. We 
consider an environment described by shadow fading and 
path loss. In such an environment  is a random variable, 
for all . Namely, 
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Here, 2
k� models the variance of the additive zero-mean 

Gaussian thermal noise corresponding to the -th sensor 
and 

k
ip is the unknown transmitted power corresponding to 

the -th among all possibly transmitting sources. The pa-
rameter is the distance between the th possibly trans-
mitting source and the th sensor and 

i S
ikd i

k � the path-loss expo-
nent that is assumed to be known. The randomness in the 
above model is introduced by the shadow fading component 

ik	 , that is modelled as a log-normally distributed random 

variable, generated by exponentiating a zero-mean and 2� -
variance Gaussian random variable, henceforth referred to as 

2 )ln (0,N �  Note that 2� is assumed to be known and same 
for all source-sensor pairs. The shadow fading components 
are modelled as uncorrelated since it is known, eg. [8], that 
their correlation practically vanishes already in small dis-
tance (ie. in few meters). 
 

3. THE MAIN RESULT 

In this section we state our main result, namely the computa-
tion of the joint probability density characterizing the obser-
vations 1,..., �� � One notes that the power received at 
each sensor depends probabilistically only on the values of 
the shadow fading between this specific sensor and each of 
the sources and is hence independent of the power received 
by any of the other sensors within the specified area. For a 
particular combination of sources transmitting some power 
within this area, the joint distribution of the power received 
at all sensors is hence a multiplication of the power distribu-
tion at each sensor. It hence suffices to describe the distribu-
tion of the power at each sensor separately. 
 
For each {1,..., }k N�  2

k k�� �  can be approximated by 
a log-normally distributed random variable ln ( , )

k kp pN 
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This essentially originates from the approximation of the 
distribution of a sum of independent log-normally distrib-
uted random variables derived by Fenton and Wilkinson [2].   
 The joint probability law of the power received by all sen-
sors is then given by 

2 2
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The goal is to maximize this multiplicative law for all possi-
ble combinations of 1,..., Sp p . This yields a non-convex 
optimization problem that can be solved numerically. To this 
end, global optimization techniques, and in particular simu-
lated annealing ([9]),  are employed. The results of this 
maximization via simulated annealing are presented in Sec-
tion 4.2. 

4. NUMERICAL RESULTS 

In this section simulation results are presented on a specific 
scenario of practical interest. In particular, we consider two 
transmitting sources (transmitting with power 100 and 50 
respectively) on some positions in a geographical area of 
size 100x100. Furthermore, sensors of known number and 
location, distributed uniformly in this area, measure the re-
ceived power in a shadow fading environment. We employ 
the ML technique on a preselected grid (of size possibly 
variable) in order to estimate the number and power of 
transmitting sources. In this section we plot the estimated 
power on the points of actual transmission (points 1 and 2 in 
Figure 1) and on two points placed vertically to the sources 
(points 3 and 4 in Figure 1) Simulations are typically per-
formed on a grid of 9 candidate locations (S=9), except from 
4.2 where the grid size is variable, and in an environment of 
�=2. Numerical results are obtained via standard convex 
optimization tools except from 4.2 where simulated anneal-
ing is employed (for large grid size convex optimization 
tools fail to converge to the global optimum). The use of a 
grid of a finite number of candidate locations induces loca-
tion errors. However, similarly to the analysis in [3], it is 
assumed that the grid-induced error can become arbitrarily 
small when the grid density is sufficiently high. 
 

}
 

 

Figure 1 – The ML technique on a specific configuration. 

 

4.1  Effect of the number of sensors 
 

Simulations were performed in order to investigate the 
effect of the number of sensors on the average estimated 
power. It can be seen in Figure 2 that increasing the number 

of sensors beyond some level (approximately 10) does not 
result to higher estimation accuracy. Simulations were per-
formed also in different settings (eg. for higher grid density 
or different source positions) and it was observed that the 
optimal number of sensors (when uniformly distributed in 
space) is characterized by the grid size and in particular it is 
O(S). 
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Figure 2 – Effect of the number of sensors 

. 

4.2 Effect of the grid size 
The performance of the ML technique was investigated for 
variable grid size selection. In particular, by employing 
simulated annealing and with randomly chosen initial condi-
tions, the estimated power is computed and depicted in Fig-
ure 3. 
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Figure 3 – Effect of the grid’s size. 

It can be observed that when the resolution of the grid is high 
the estimated power at the actual sources’ positions decreases 
since substantial power is estimated also in adjacent locations 
around the actual ones.  In Figure 3 the aggregate estimated 
power around the location of source 1 and 2 respectively is 
also depicted. 
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4.3 Effect of the shadow fading variance 
The effect of the shadow fading variance (�) was investi-

 to be 0.5 but in 
n. 

d �=0.5) 
The effect of the shadow fading variance was investigated, 

gated in two cases: i) when � is hypothesized
reality varies from 0.1 to 1, ii) when � is know

 

 i)Shadow Fading Variance Unknown( hypothesize

when � is unknown and considered to be �=0.5. 

0.1 0.5 1
0

10

20

30

40

50

60

70

80

90

100

Standard Deviation of Shadow Fading (unknown, considered to be 0.5)

A
ve

ra
ge

 E
sti

m
at

ed
 P

ow
er P1=100

P2=50
P3=0
P4=0

 
Figure 4 – Effect of the shadow fading variance (when unknown). 

It can be observed that when � is unknown it is beneficial to
o
an

shadow fading variance 
e of the algorithm. The 
rces’ locations decreases 

 
verestimate it than to underestimate it, since the perform-
ce is more sensitive to the latter. 

i)Shadow Fading Variance Known 
Figure 5 depicts the effect of the 
(when known) on the performanc
estimated power on the actual sou
when � increases, and also sources of substantial power are 
estimated elsewhere in the area. For higher values of the 
fading variance (�>1) the estimated power is higher in loca-
tions other than the actual sources’ locations and the algo-
rithm introduces localization error. 
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Figure 5 – Effect of the shadow fading variance (when known).

 Fi e 

4.4
ance is investi-

gure 5 depicts also a comparison of the performanc
when the variance is known and unknown (performance is 
identical for �=0.5 as expected). 

 

Effect of an unknown additive jitter 
The effect of thermal noise on the perform
gated in this subsection. In particular, we consider the fol-
lowing model for the received power: 
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where s a standard Gaussian random variable. 
  the exis-

U  i
We consider that the sensors are ignorant of

tence of thermal noise (both for its instantiation and for its 
statistics) and therefore the ML technique is employed as 
described in the previous sections. 
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Figure 6 – Effect of the additive noise variance 

In Figure 6, it can be seen that for 0.01k� � the algorithm’s 

.5 Effect of fast fading 
ion is performed over multiple 

performance is poor. 
 

4
The case where transmiss
frequency bins is treated in this paragraph. We consider the 
frequency bins to be appropriately chosen in order to guar-
antee that the fast fading components are independent. In 
particular, we consider: 
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2nent chi- are distri ables of order . 
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Figure 7 – Effect of the number of frequency bins (mean) 
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Figure 8 – Effect of the number of frequency bins (variance) 

Figures 7-8 depict the mean and the variance, respectively, of 
the power estimation technique. It can be seen that increasing 
the number of frequency bins is beneficial. 

5. DISCUSSION 

 
The proposed technique involves the solution of a non-
convex optimization problem. The complexity of this prob-
lem is characterized by the grid size. For a kxk-size grid the 
complexity is exponential with respect to k. However, when 
global optimization tools are employed, complexity is deter-
mined also by the selection of such tools. More specifically, 
for simulated annealing the complexity can be bounded by a 
polynomial.  
 
The choice of initial conditions is critical for the speed of 
convergence to the global optimum. In a cognitive radio sys-

tem prior information can be provided by the Radio Envi-
ronmental Maps. In such cases global optimization tools 
converge faster and in particular convex optimization tools 
can prove sufficient. 

6. CONCLUSIONS 

A technique for obtaining RIFE via Maximum Likelihood in 
a shadow fading environment was presented in this paper. 
The technique involves localization and power estimation of 
an unknown number of sources. Numerical results were 
presented in order to corroborate the theoretical claims. 
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