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ABSTRACT

Visual category recognition is a difficult task of significant interest
to the machine learning and vision community. One of the principal
hurdles is the high dimensional feature space. This paper evaluates
several linear and non-linear dimensionality reduction techniques.
A novel evaluation metric, the rényi entropy of the inter-vector eu-
clidean distance distribution, is introduced. This information theo-
retic measure judges the techniques on their preservation of struc-
ture in lower-dimensional sub-space. The popular dataset, Caltech-
101 is utilized in the experiments. The results indicate that the tech-
niques which preserve local neighborhood structure performed best
amongst the techniques evaluated in this paper.

1. INTRODUCTION

The topic of visual category recognition is of considerable interest
to researchers in machine learning, computer vision and pattern
recognition. It is a challenging task due to the complexity of data
utilized to learn efficient classifiers [21]. There are numerous
approaches employed from state-of-the-art algorithms in machine
learning [28]. The objective is recognition of visual objects in
images in terms of their visual category. Consequently, in addition
to the issues of pose and illumination variance, background clutter,
and partial occlusion, successful approaches must contend with
significant intra-category appearance variation. This requires large
datasets, which are generally poorly annotated, leading to noisy
training data. Significant progress towards recognition has been
achieved in the past few years by researchers working to improve
the components of a typical visual categorization approach like
feature descriptors, clustering methods, contextual information,
visual models, and classifiers. However, the topic of dimensionality
reduction of feature descriptors for that task has not received due
attention. Researchers have, as yet continued to utilize the simplest
linear dimensionality methods like PCA [12]. This is perhaps
due to the computational efficiency and popularity of PCA and
its demonstrated success [13]. However, independently there has
been considerable progress in the development of dimensionality
reduction, especially non-linear techniques, which has not been
sufficiently explored for improving visual categorization. Conse-
quently, the focus of this paper is quantitative exploration of such
techniques to aid in visual categorization. The principal issues are:
the curse of dimensionality faced by the clustering method used to
compute the visual codebook model [1]; considerably noisy feature
data due to lack of sufficient annotated training images [22]; and
inherently different lower dimensional sub-spaces for different
visual categories.

The issues with visual datasets and the nature of the visual cate-
gorization task together presents a challenge which can benefit from
the properties of dimensionality reduction. The motivation for di-
mensionality reduction is to:

• project the data to a lower dimensional space to ameliorate the
problem of high dimensionality faced by a distance metric.

• reduce the effects of noise by exclusion of feater descriptor di-
mensions irrelevant to the visual category.

• discover a visual category specific lower dimensional sub-space.
The challenge of visual categorization is:
• noise in data due to lack of annotation and background clutter.
• use of affine invariant local image patch descriptors like

SIFT[16] which results in a high dimensional feature space not
amenable to a Euclidean distance metric utilized by popular
clustering techniques.

• significant intra-category appearance variation and use of low-
level image descriptors which results in semantically equivalent
descriptor vectors being scattered in feature space rather than
being clustered together.

The lack of visual category specificity of these descriptors is solved
by computing their occurrence histograms, an idea inspired by the
‘bag-of-words’ model used successfully in text-document retrieval,
which is the basis of the popular ‘bag-of-features’ model (BoF) [6].
The histogram of a visual category is called a visual codebook. The
mathematical formulation of the BoF model is provided in 2.1. In
brief, it is computed by a LVQ method, popularly k-means clus-
tering, which encodes the feature space. The classifier is trained
on the histogram feature rather than the original low-level descrip-
tor. Therefore, the performance of the classifier depends on the
information content in the visual codebook after compression of
feature space. A hurdle is the ‘curse of dimensionality’ which ren-
ders the Euclidean distance metric ineffective for high dimensions
(the SIFT descriptor for example is of 128 dimensions). Therefore,
the dimensionality reduction method must project feature space to a
lower dimensional sub-space with the aim of maximizing informa-
tion content in the sub-space. Consequently, an entropic measure of
information is utilized in this paper to evaluate the efficacy of vari-
ous dimensionality reduction techniques. Rényi entropy is selected
as the entropy measure, since it: is a generalization of Shannon en-
tropy, which is a family of functionals for quantifying the diversity
in a data distribution; admits a generic closed form expression for
distributions belonging to the same exponential family [20] (expo-
nential family is a unifying framework for many common distribu-
tions like Gaussian, multinomial, Beta); and varies monotonically
with information and so can be used interchangeably with it. The
key contributions of this paper are:
• quantitative evaluation of linear and non-linear dimensionality

reduction methods for visual category recognition.
• use of an entropic measure from information theory to evaluate

the efficacy of dimensionality reduction for computing visual
codebooks.

• introduction of rényi entropy of inter-vectors distance distribu-
tion as evaluation measure.

A background to visual category recognition using BoF model, di-
mensionality reduction techniques evaluated in this paper, rényi en-
tropy, the dataset, and the feature descriptor utilized is provided in
section 2. The experiment for estimation of intrinsic dimensional-
ity of categories is described in section 3. The motivation for the
evaluation metric and the experimental setup is described in section
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Figure 1: Bag-of-Features technique for computing visual codebook

4. The results for the experiments comparing the techniques is pre-
sented in section 5. An analysis of the results and future work is
discussed in section 6, along with a summary of the paper.

2. BACKGROUND

This section discusses the BoF model, the dimensionality reduction
techniques evaluated in this paper, and rényi entropy.

2.1 Bag-of-Features Model

The BoF model is a basic component of most of the approaches to-
wards visual categorization, and consequently the focus of this pa-
per. It seeks to encode feature data in a high-dimensional manifold
using a set of reference or codebook vectors, which are most rep-
resentative of the training data. An illustrative example is shown
in figure 1. The training data is a set of K images, each repre-
sented by a set of feature points. Each such set can be denoted
by {X1,X2, . . . ,XK}, where Xk = { f k

1 , f k
2 , . . . , f k

Nk
}. Each feature

point is defined by its appearance descriptor f k
i ∈RD, where D is

the dimensionality of the appearance descriptor. The total number
of feature points in a dataset are N = ∑

K
k=1 Nk, where Nk are the

number of points in the kth image. The feature vectors f lie in
a sub-manifold V ⊆ RD. BoF utilizes a vector quantization tech-
nique to encode V using a finite set C = {c1, . . . ,cM} of codebook
vectors (cluster-centers or visual words), ci ∈ RD, i = 1, . . . ,N. A
data-vector f ∈ V is described by the ‘winning’ reference vector
ci of C for which the distortion error d( f ,ci) is minimum. The
euclidean metric is generally selected as a distortion measure, so
d( f ,ci) =‖ f − ci ‖2. This technique splits the manifold V into
hyper-cells Vi = f ∈V |‖ f − ci ‖≤‖ f − c j ‖ ∀ j, in which each data
vector f is described by its corresponding reference vector ci. If
the probability distribution of data vectors over the manifold V is
described by P( f ), then the average distortion error is determined
by: E =

∫
dD f P( f )( f − ci)

2, which is minimized by a search for
an optimal set of reference vectors ci. A histogram of data vec-
tor association to reference vectors is computed. The histogram,
H = {h1,h2, . . . ,hM}, where hi = |Vi|. This histogram is often nor-
malized and is characteristic of the data XK . It is utilized as a feature
vector for training a classifier like a SVM.

2.2 Dimensionality Reduction

Dimensionality reduction can be mathematically formulated
as: consider a p-dimensional feature descriptor vector x̄ =
{x1, . . . ,xp}T . For x̄ compute a lower dimensional representation
of it, s̄ = {s1, . . . ,sk}T with k ≤ p, that captures the content in the
original data, based on some criterion. In brief, the methods con-
sidered in this paper are:
1. Principal Component Analysis (PCA)[12]: It projects the data

onto the eigenvectors with the greatest variance.
2. Linear Discriminant Analysis (LDA)[27]: It preserves as much

of the class discriminatory information as possible.
3. Multi-Dimensional Scaling (MDS)[5]: It seeks to find an em-

bedding to lower dimensional space such that distances between
data vectors is preserved. Mathematically, given M data vec-
tors, the distance between xi and x j ∈ RN is δi, j. The goal

of MDS is, given ∆, to find vectors s1, . . . ,sM in RP such that
‖ si− s j ‖P≈ δi, j∀xi,x j ∈M.

4. Probabilistic Principal Component Analyzers [26]: It is a prob-
abilistic model for PCA which combines local PCA models
within the framework of a probabilistic mixture in which all the
parameters are determined from maximum-likelihood using an
EM algorithm.

5. Factor Analysis [8]: It originates from the field of psychology.
It assumes that the data distribution is sourced from underly-
ing ‘factors’. The methods attempts to estimate this factors and
thereby reduces dimensions of the data.

6. Isomap [25]: It overcomes the issues with traditional linear scal-
ing methods which attempt to conserve pair-wise euclidean dis-
tances. Instead it attempts to preserve pair-wise geodesic dis-
tance, which is the distance between two points on a manifold.

7. Landmark Isomap (L-Isomap) [24]: It is a method for approxi-
mating a large global computation in Isomap by a much smaller
set of calculations. The method focuses on a small subset of the
data, called the landmark points.

8. Locally Linear Embedding (LLE) [23]: It aims to find low-
dimensional global co-ordinates for data that lie on or near a
manifold embedded in high dimensional space RN . The three
parts to LLE: find the k nearest neighbors for each xi ∈ RN ;
find matrix w which minimizes the residual sum of squares
for reconstructing each xi from its neighbors, where RSS(w) ≡
∑

n
i=1 ‖ xi−∑ j 6=i wi jx j ‖2; and compute low-dimensional coor-

dinates Y best reconstructed to minimize cost function ω(Y ) =
∑i(yi−∑

k
j=1 wi jyi)

2.
9. Diffusion Maps [14]: It builds a map between data points and

computes all possible paths between point through the graph.
The lower dimensional projection aims to retain the best possi-
ble pair wise diffusion distance.

10. Kernel PCA [11]: It computes the principal eigenvectors of the
kernel matrix, instead of the covariance matrix as in traditional
PCA.

11. Symmetric Stochastic Neighbor Embedding (SymSNE) [18]: It
is a variation of Stochastic Neighbor Embedding.

12. t-distributed Stochastic Neighbor Embedding (tSNE) [17]: It is
an improvement on Stochastic Neighbor Embedding. It is par-
ticularly important for high-dimensional data that lie on several
different, but related, low-dimensional manifolds.

13. Neighborhood Preserving Embedding (NPE) [10]: It aims to
preserve local neighborhood structure and is less sensitive to
outliers compared to PCA.

14. Locality Preserving Projection (LPP) [9]: It builds a graph G
using neighborhood information of the data vectors. Using the
Laplacian of this graph L(G), transformation matrix A is com-
puted, which maps the data points to a subspace, xi→ yi =AT xi.
This linear transformation optimally preserves local neighbor-
hood information in a certain sense.

15. Stochastic Proximity Embedding (SPE) [2]: It generates low-
dimensional euclidean embeddings which attempt to preserve
the similarities between related feature vectors. The embedding
is carried out using an iterative pair-wise refinement strategy
that attempts to preserve local geometry while trying to maintain
minimum separation between distant vectors.
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Figure 2: Estimation of intrinsic dimensionality of visual cate-
gories in the Caltech-101 dataset, using (i)MLE,(ii)Correlation di-
mensional, and (iii) Eigenvalue, based methods.

16. Linear Local Tangent Space Alignment (LLTSA) [29]: It uses
the tangent space in the neighborhood of a feature vector to
represent the local geometry. It then aligns these local tangent
spaces in the lower dimensional space. The feature space is pro-
jected linearly to the lower dimensional space.

2.3 Rényi Entropy
Rényi entropy is an extension of the commonly known Shannon
entropy, which is a measure of information in a system. Shannon
defined entropy H of a distribution with probability pi[i]N1 as:

H(p) =−K
N

∑
i=1

pilnpi

where K is a positive constant. Rényi extended Shannon entropy to
a continuous family of entropy measures that obey:

Hα (p) =
1

1−α
ln

N

∑
i=1

pα
i

where Rényi entropy tends to Shannon entropy as α → 1. Rényi
entropy is a monotonic function of the information, which implies
that they can be used interchangeably in any practical application.

2.4 Dataset
The dataset used in this paper is one of the most popular and bench-
mark datasets Caltech-101 [7]. There are a total of 9146 images,
split between 101 different object categories, as well as an addi-
tional background/clutter category. Some other popular datasets
that could alternatively have been used for this paper are Caltech-
256 (256 categories), Pascal VOC 2007-10 (20 categories),and Graz
(3 categories). Caltech-101 was selected for its popularity and ap-
propriate number of categories for this task.

2.5 Feature Descriptor
The feature descriptor utilized in this work is the Scale Invariant
Feature Transform (SIFT)[16]. It belongs to the class of affine
invariant feature descriptors which were designed for the task of
wide-baseline stereo matching. It performs remarkably well for im-
age matching under significant affine variation, partial occlusion
and background clutter. A comparative performance analysis can
in found in [19].

3. INTRINSIC DIMENSIONALITY ESTIMATION

The choice of dimension of the lower dimensional sub-space is
based on the intrinsic dimensionality of the visual category. There
are numerous estimation methods in the literature. Three methods
utilized in this paper are:
• eigenvalue[4]: It is based on global or local PCA. The intrinsic

dimension is determined by the number of eigenvalues greater
than a given threshold.

• correlation dimension [3]: It is a fractal based technique to esti-
mate the attractor dimension of the underlying dynamic system.
It is defined as: let Ω = {x1,x2, . . . ,xN} be a set of points in
Rn of cardinality N . If the correlation integral Cn(r) is defined
as: Cn(r) = 2

n(n−1) ∑
n
i=1 ∑

n
j=i+11‖ xi− x j ‖≤ r, then the corre-

lation dimension D of Ω is: D = limr→0
ln(Cm(r))

ln(r) .
• maximum likelihood estimate [15]: It estimates the intrinsic

dimensions m̂ for {x1,x2, . . . ,xN} ∈ Rd ,m ≤ d. Based on the
distance of each data point xi from its k neighbors, the esti-
mated dimension is: m̂k(xi) = [ 1

k−2 ∑
k−1
j=1 log( Tk(xi)

Tj(xi)
)]−1, where

Tk(xi) is the distance of xi to it’s k nearest neighbors. The
intrinsic dimensionality is the average over all observations:
m̂k =

1
n ∑

n
i=1 m̂k(xi).

In the experiment, a random set of 2000 data-vectors was sampled
from each category in Caltech-101. This experiment was repeated
for 100 trials. The average and standard deviation of the estimated
dimensionality by each of the methods for each of the categories
in shown in figure 2 (a representative set of 25 categories is shown
due to lack of space). The data marker denotes the average dimen-
sionality and the error bars denote the standard deviation in the es-
timated value. Although each method estimates a different absolute
value for a category, they can be seen to follow the same trend. The
relatively small error bars indicates that the sample size of 2000
vectors is a sufficient sample to estimate the nature of distribution
of the feature vectors. This result highlights the benefit that can
be found in category specific dimensionality reduction. Since, the
objective of this work is a comparative evaluation, an average is
computed across all categories. The average and standard deviation
of dimensionality across all methods and categories is 13.0786 and
0.0817 respectively. Accordingly, rounding the average intrinsic di-
mensionality, the lower dimensionality used in this paper will be 13
dimensions.

4. EXPERIMENT

The section explains the evaluation metric used for comparison of
the techniques and the experimental setup.

4.1 Evaluation Metric
The information content in the distribution of feature vectors is mea-
sured using rényi entropy of the pair-wise distance distribution of
these feature vectors. Pair-wise distance is important because: all
the dimensionality reduction methods try to preserve this quantity
in different ways; it determines the visual codebook created by clus-
tering. The relevance of this metric is illustrated using two synthetic
data distributions shown in figure 3. The first (A) is a helix where
the distribution has a self-evident structure, and the second (B) is
a random distribution with no discernible structure. The histogram
of pair-wise distances for data vectors for both these distributions is
shown in (C). The unimodal histogram of the distribution (B) has a
lower rényi entropy of −21.8477, compared to the helix which has
a entropy of −16.8132.

4.2 Setup
The feature descriptor data for all the training images for every cat-
egory in Caltech-101 is computed using SIFT [16]. The dataset
has different number of sample images for each category. To intro-
duce uniformity of comparison, 2000 feature vectors are randomly
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Figure 3: Illustrative example of relation between inter-vector dis-
tance distribution histogram, entropic measure, structure in visual
category data.

Figure 4: Rényi entropy of various techniques for α = 1.5 and
α = 2.

selected from the available set for each category. The pair-wise dis-
tance between these feature vectors is computed using the euclidean
distance. Next rényi entropy is computed for different values of
the parameter α ∈ {1.5,2}. Each of the dimensionality reduction
methods being evaluated projects the data in each category to its
sub-space of 13 dimensions, which is the average intrinsic dimen-
sionality of all the categories. The rényi entropy for the pair-wise
distance distribution is computed for the same set of values of α

for the data in the projected sub-space. Besides the entropy value,
the computational time complexity of each dimensionality reduc-
tion method is also important. Accordingly, the time taken by each
method is recorded for comparison. The experiment is run using
Matlab R© (R2010a) on a 3.0 GHz Xeon processor on a Linux sys-
tem.

5. RESULTS

The rényi entropy for various techniques for parameter values of
α = 1.5 and α = 2 is shown in figure 4. The best performance
is achieved by LPP, with NPE, LLE, and kernel-PCA amongst the

Figure 5: Variation in rényi entropy for different visual categories
by different techniques.

Figure 6: Comparative look at computation time of various tech-
niques.

next best. The error bars show the standard deviation in the en-
tropy measure across all the categories. It is interesting to note
that, with the exception of Probabilistic-PCA, all techniques have
small variance in entropy measured across categories. This demon-
strates that the choice of category is independent of the choice of
dimensionality reduction technique and need not be considered fur-
ther for any more categories. Conversely, from the perspective of
the visual categories, no category had a consistently better or worse
performance for all techniques. This is shown by a representative
set of techniques and categories, in figure 5. The rényi entropy for
PCA,LDA,LLE,and LPP for the first 25 categories of Caltech-101
shows no consistent correlation between technique and visual cat-
egory. The computational time for all the techniques is shown in
figure 6. Some of the non-linear techniques utilized time of several
orders of magnitude higher than the linear methods. For effective
visualization the y-axis is on a log scale. The error bars denote the
variation across categories, showing the minimum and maximum
time utilized. The traditional linear methods PCA,LDA, and MDS
are the fastest, as expected. The important outcome is that LPP
which performed the best is also faster than other non-linear meth-
ods. This makes LPP stand out as a valid candidate to replace PCA
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in future.

6. SUMMARY & DISCUSSION

The paper evaluates several dimensionality reduction techniques
for the task of visual category recognition. The techniques include
linear methods, which are popular and computationally fast, and
comparatively recent non-linear methods, which are not commonly
utilized and have greater computational time complexity. The
issues with visual categorization using BoF model are presented
and the features of dimensionality reduction that can help resolve
some of these issues is discussed. A novel evaluation metric using
rényi entropy of inter-vector distance distribution, is introduced.
Rényi entropy is monotonically related to information content and
is a family of functionals of the diversity in a distribution. The
rényi entropy of the dimensionality reduction methods is compared
for multiple values of the parameter α , with the time taken by
each of these methods to project the data in each visual category
to it’s lower dimensional representation. The value of the lower
dimension is based on estimation of intrinsic dimensionality using
three methods for all categories.
The technique which performed best in terms of the evaluation
metric and computation time is the Locality Preserving Projection
(LPP). The next best performance was achieved by Neighborhood
Preserving Embedding (NPE). The results could be explained
by the ability of these techniques to preserve local clusters of
visually semantically related feature vectors. Overall, the results
highlight the efficacy of non-linear methods over the prevalent
linear methods, at a cost of higher computational time.
While the entropic measure indicates performance of the dimen-
sionality reduction technique in terms of preservation of structure
in the data, it is unable to ascertain whether semantically equivalent
feature vectors are project to the same clusters, so that they count
towards the same visual codebook element. Future work would
include repeating this experiment on other public datasets to
ascertain if LPP continues to perform consistently superior to other
techniques, and assessing classification performance along with the
entropic measure as evaluation criteria.
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