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ABSTRACT 
In this paper, an adaptive separable 2D wavelet transform is 
proposed. Wavelet transforms are widely used in signal and 
image processing due to its energy compaction property. 
Sparser representation corresponds to better performance in 
compression, denoising, compressive sensing, sparse com-
ponent analysis and many other applications. The proposed 
scheme results in more compact representation then fixed 
wavelet.  Instead of the commonly used least squares crite-
rion, least absolute deviation (LAD) is introduced. It results 
in more accurate adaptation resistant to outliers. The ad-
vantages of the proposed method have been shown on syn-
thetic and real-world images.  

1. INTRODUCTION 

Two-dimensional wavelet transform is widely used in image 
analysis, compression, denoising and many other applica-
tions [1][2][3]. The analytical strength of wavelets lies in its 
energy compaction property, or, in other words, in sparse-
ness of image representation in the wavelet domain. The 
wavelet transforms can be efficiently realized using filter 
banks. Among the others, the lifting scheme is one of the 
most effective realizations of wavelet filter banks [4]. 
The key of sparseness is the polynomial annihilation proper-
ty: well chosen wavelets provide for desired number of va-
nishing moments, which cancel out the polynomials of the 
corresponding order. In fact, many real-world images can be 
locally well approximated by polynomials, which results in 
sparse representation. It is essential for many hot research 
topics, such as compressive sensing, blind separation of un-
derdetermined mixtures and many others [5][6]. 
Still, there are several drawbacks. More vanishing moments 
correspond to longer support of the wavelets, thus producing 
ringing of wavelet coefficients on image edges. It causes 
visible artifacts, which is especially annoying in image anal-
ysis. Moreover, periodic patterns in images (like sine waves) 
are not well represented by finite-order polynomials. Hence, 
it results in a sub-optimal wavelet representation: sine waves 
in input images result in sine waves in the wavelet domain. 
It motivated us to realize an pixel-wise adaptive wavelet fil-
ter bank that overcomes the aforementioned drawbacks. The 
idea is to have fixed part(s) of the bank which provide for 
desired number of vanishing moments, and variable part(s) 
which provide for pixel-wise adaptation. The vanishing mo-

ments must be preserved regardless of the adaptation, and the 
adaptation must behave well on edges in images. It should 
result in more compact representation for a wide class of 
inputs, including periodicities and image components with 
long-tail Taylor series. 
In this paper, we propose a separable implementation of an 
adaptive wavelet filter bank with desired number of vanish-
ing moments and adjustable number of adaptive parameters. 
Due to its robustness (insensitivity to outliers), we propose 
use of the least absolute deviation (LAD) criterion [7] on the 
fixed size sliding window for the adaptation. We have shown 
advantages of the proposed scheme over the fixed wavelets, 
as well as over the least squares error (LS) adapted wavelets; 
when applied on synthetic and real-world images. 

2. SEPARABLE 2D ADAPTIVE WAVELET FILTER 
BANK  

The lifting scheme is a numerically efficient and a memory 
saving implementation of wavelet filter banks [4]. Further-
more, it enables pixel-wise adaptation that ensures perfect 
reconstruction by a simple change of sign, thus enabling a 
construction of the second-generation wavelets [8]. Although 
there are several ways of implementing wavelets in 2D, and 
some of them are non-separable, or even adaptive [3], in this 
work we use a separable implementation. It has shown sever-
al advantages, due to its: a) simplicity and efficiency, b) in-
dependent adaptation across the rows and columns.  
At first, every row of the image is analyzed, as shown in Fig-
ure 1. Primal lifting step S and dual lifting step T consist of 
fixed and variable part that ensure zero moments and enable 
adaptation, respectively. The same analysis is conducted 
across every column of the intermediate results A and D.  

 
Figure 1 – Separable 2D adaptive lifting scheme. 
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Due to decimation, four resulting images AA, AD, DA and 
DD are quarter size of input image X(z1,z2).  
Essentially, the separable implementation consists of three 
one-dimensional adaptive filter banks applied in different 
directions, one of which is shown in Figure 2. It is realized 
using the adaptive lifting scheme (detailed description in [9]).  
Wavelet details D are outputs of high-pass filter defined by S 
in the primal lifting step, and approximations are outputs of 
low-pass filter defined by T in the dual lifting step. The prim-
al lifting step shown in Figure 2 has fixed part that ensures at 
least two vanishing moments (“wired” b0 = 1). We can pro-
vide more vanishing moments by successive setting parame-
ters bk to 1, and we can use the remaining subset of parame-
ters bk for adaptation. In that case, depending on the adapta-
tion criterion, the analysis function could better match the 
local properties of input signal X. The analogy stands for the 
dual lifting step. Finally, the reconstruction is conducted by 
reversing the order and corresponding signs of the lifting 
steps.  
At each point, the adaptation algorithm uses multiple inputs 
Uk to successfully predict single output Yd and to minimize 
the error D after primal lifting step, as well as multiple inputs 
Vk to predict output Ya and minimize A after dual lifting step. 
Wide class of input signals produce zero wavelet coeffi-
cients: polynomials due to the fixed part, sine waves due to 
the adaptive part (see paragraph 4), all in purpose to produce 
the sparsest possible representation. 

 
Figure 2 – Adaptive wavelet filter bank. The argument z is a place-

holder for z1 or z2, depending on direction of application. 

3. LAD VERSUS LSE MINIMIZATION 

3.1 MISO system 
In general, a system with multiple inputs and a single output 
(MISO) is given by difference equation: 

ሺ݊ሻݕ ൅ ܽଵݕሺ݊ െ 1ሻ ൅ ڮ ൅ ܽ௡ೌݕሺ݊ െ ݊௔ሻ 
ൌ ܾଵଵݑଵሺ݊ሻ ൅ ڮ ൅ ܾଵ௡್భݑଵሺ݊ െ ݊௕ଵ ൅ 1ሻ 
൅ܾଶଵݑଶሺ݊ሻ ൅ ڮ ൅ ܾଶ௡್మݑଶሺ݊ െ ݊௕ଶ ൅ 1ሻ ൅  ڮ
൅ܾ௡ೠଵݑ௡ೠሺ݊ሻ ൅ ڮ ൅ ܾ௡ೠ௡್೙ೠ

௡ೠ൫݊ݑ െ ݊௕௡ೠ ൅ 1൯, 

where nu is the number of inputs u1, u2,… ݑ௡ೠ; na, nb1, nb2,… 
are the system orders and a1,…,b11,… are the system parame-

ters. To calculate several shifts of y(n), we use a matrix equa-
tion Y ൌ Ψ ڄ θ, where 
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and nw is the window length of Y.  
Assume that we know the inputs and the outputs, and we do 
not know parameters θ. The outputs are known up to some 
measurement uncertainty, e.g. they contain noise. So the 
parameters can be estimated using some error minimization 
technique. 

3.2 Least squares (LS) and least absolute deviation 
(LAD) 

If estimated parameters are θ෠, estimation error is: 

߳ ൌ Y െ Ψθ෠. 

Dimension of ߳ is nw. ܮଶ norm based cost function is: 

ሺθሻܨ ൌ ||߳||ଶ
ଶ ൌ ்߳߳, 

ሺθሻܨ ൌ ൫Y െ Ψθ෠൯T൫Y െ Ψθ෠൯ ൌ ෍൫ݕ௜ െ ௜θ෠൯ଶߖ
௡ೢ

௜ୀଵ

, 

where ݕ௜ is i-th element of vector Y, and ߖ௜ is i-th row of 
matrix Ψ. The well-known LS solution for minimum of ܨ is: 

θ෠ ൌ ሺΨTΨሻିଵΨY. (1) 

 :ଵ norm based cost function isܮ

ሺθሻܨ ൌ ||߳||ଵ ൌ |߳| ൌ ෍หݕ௜ െ ௜θ෠หߖ
௡ೢ

௜ୀଵ

. (2) 

One possible way for finding minimum L1 parameters is ite-
ratively reweighted least squares (IRWLS). Using this me-
thod we can express the ܮଵ cost function similarly as the ܮଶ: 

ሺθሻܨ ൌ ෍หݕ௜ െ ௜θ෠หߖ
௡ೢ

௜ୀଵ
௜ܹ௜หݕ௜ െ  ,௜θ෠หߖ

where W is a diagonal weight matrix with diagonal elements 
௜ܹ௜ ൌ 1 หy୧ െ ⁄௜θ෠หߖ . Since we do not know θ෠ in advance, we 

do not know ௜ܹ௜ as well. But, we can find them iteratively 
[10]: 

1. take some initial θ෠଴, ݇ ൌ 1; 
2. calculate elements of matrix W; 
3. find estimated parameters θ෠௞ ൌ ൫ΨTWΨ൯

ିଵ
ΨTWY; 

4. if θ෠௞ ് θ෠௞ିଵ take ݇ ൌ ݇ ൅ 1 and repeat steps 2 - 4; 
else stop with θ෠ ൌ θ෠௞ (up to desired precision). 

The other way of finding LAD adapted parameters is based 
on linear programming (LP). Cost function can be stated as:  
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min ෍ ௜ݐ
௜

, 

subject to െ ௜ݐ ൑ ௜ݕ െ ௜θ෠ߖ ൑  ,௜ݐ

where ti are non-negative slack variables [11], and the mini-
mization problem can be solved using any known LP tech-
nique.  
We use either one or another way to solve our L1 adaptation 
problem. Efficient L1 minimization is a hot research topic 
[12], which is beyond the scope of this paper. 

4.  ADJUSTABLE LIFTING STEPS 

At first, we observe each row of input image X(z1, z2) and 
analyze it using the adaptive wavelet filter bank (Figure 2). 
The primal lifting step predicts odd samples from neighbor-
ing evens. Fixed part ensures two vanishing moments: it an-
nihilates linear component of the observed row producing 
intermediate signal Yd. Now, we use input signals u1, u2 and 
u3 and adjust parameters b1

r, b2
r and b3

r in order to predict Yd. 
The prediction error remains in intermediate details D. We 
observe these signals on a sliding window of the length nw. 
Hence, our optimization matrices are: 
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൪ 

Desired parameters θ can be found by minimizing L2 norm 
applying (1) or by minimizing L1 norm (2) using linear pro-
gramming techniques or iteratively reweighted least squares 
method.  
Similar procedure is conducted in the dual lifting step. Here, 
we predict Ya from inputs v1, v2 and v3 by adjusting parame-
ters c1

r, c2
r and c3

r. Prediction error is intermediate approxi-
mation A.  
Finally, following the separable 2D generalization from Fig-
ure 1, we apply the same procedure to every column of the 
intermediate results D and A. Using the chosen criteria, we 
calculate parameters b1

ca, b2
ca, b3

ca, c1
ca, c2

ca and c3
ca for ap-

proximation A and parameters b1
cd, b2

cd, b3
cd, c1

cd, c2
cd and c3

cd 
for details D. The final results are four quarter-size images 
designated as AA, AD, DA and DD. The calculated parame-
ters should be used on the reconstruction side, as well.  

5. RESULTS 

To illustrate the proposed method, we adapt only one para-
meter (b1) across the rows and columns. For the simplicity, 
all other parameters in primal and dual steps are set to zero.  
By adjusting parameter b1, we actually change the high-pass 
filter, and its zero locus plots are shown in Figure 3. Fixed 
part of the primal lifting step ensures two zeros in ݖ ൌ 1.  

Re

Im

b1=0

b1= - 8

b1 - ∞

b1 - ∞

b1 - ∞

  

Figure 3 – Zero locus plot of the HP filter, parameter b1.  
Left: negative values, right: positive values of b1. 

Considering that, we created an artificial image (left hand 
side of Figure 4) composed from four cosine wave segments 
with different frequencies and angles. Upper two segments 
have vertical cosine lines. Left lower segment contains sum 
of horizontal and vertical cosine lines, while the remaining 
segment contains tilted cosine wave. In the centre of the first 
segment there are two white pixels – outliers. Resolution of 
the image is 200x200 pixels. Filter parameters b1

r(n) are be-
ing adapted for each position n in every row, on a sliding 
window. The adaptation is conducted on interval ሾ݊ െ
15, ݊ ൅ 15ሿ by the least squares algorithm and by the least 
absolute algorithm to produce intermediate results A and D. 
The same procedure is then used column-wise to find filter 
parameters b1

ca(n) and b1
cd(n). 

Parameters b1
[·] (n) adjust to the frequencies of the analyzed 

signals in purpose to cancel out the cosine waves. Both adap-
tive approaches, LS and LAD, result in significantly sparser 
representation, when compared to the fixed wavelets (bi-
orthogonal, 2 vanishing moments). One-level decomposition 
is shown in Figure 4.  
Adapted parameters b1

[·] (n) are shown in Figure 5. The edge 
between the two patterns of the image is significantly nar-
rower for the LAD criterion. Transition area for the LAD 
(minimum L1) might be only one pixel, which is not the case 
for the LS (minimum L2), where it depends on the adaptation 
window length. The influence of the outlier is clearly visible 
in the LS adapted parameters, while it is not present at all 
when using the LAD.  
To additionally illustrate properties of the proposed adaptive 
wavelets, we extracted one row of image x and correspond-
ing rows of the DA coefficients and the b1

r parameters, as 
shown in Figure 6. The row contains an outlier, which is 
pointed by an arrow. Clearly, the DA coefficients produced 
by the adaptive wavelets are more concentrated then by the 
fixed wavelets. The sparsest coefficients are result of the 
LAD criterion, with shorter transition areas and less ringing 
near the edges. The difference between the two criteria is 
clearly visible in adaptive parameters b1

r. The adaptation 
window length determines the transition area on the edges 
and around the outliers when the LS is applied. Moreover, 
the transition area is very short when the LAD is used and 
insensitive on the window length.  
In real images, success of the adaptation depends on noise, 
spatial frequency content and spatial stationarity.  
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Figure 4 – Left: input image (x). Right: decimated one level wavelet decomposition using fixed wavelets (no adaptation), LS adaptive (L2) 
and LAD adaptive wavelets (L1). In each wavelet decomposition, upper left quarter is approximation AA; upper right quarter is detail AD, 
lower left quarter is detail DA, and lower right quarter is detail DD. Gray-levels of details are rescaled for visibility. Both adaptive approaches 
significantly reduce details. L1 adaptation is almost optimal: very sparse representation. 

  

Figure 5 – Adapted parameters. Left to right: b1
r, b1

ca (up) and b1
cd (down) adapted using least squares (minimum L2);  

b1
r, b1

ca (up) and b1
cd (down) adapted using least absolute deviation (minimum L1). Proposed sliding-window L1 adaptation is almost optimal: 

it adjusts to the frequency content of the input image, with sharp transitions between different areas. 
 

 
Figure 6 – One row of image x (50th). Top to bottom: original sig-
nal, details (fixed wavelets), details (L2 adapted), details (L1 
adapted), parameters (L2), parameters (L1). Transition area and out-
lier influence is determined by the sliding window length for the L2 
norm and almost invisible for the L1. 

Figure 7 (left hand side) shows a magnified part of the real 
image (Barbara, part of clothes) contaminated by the salt and 
peppers noise (1% pixels, Gaussian amplitude distribution, 
ߪ ൌ 100). The adaptation is conducted in the same way as 
for the previous synthetic image. The results of one-level 
wavelet decomposition for fixed and adaptive wavelets are 
presented in Figure 7. 
In the case of fixed wavelets, periodic parts of the image re-
sult in periodic wavelet coefficients. The influence of outliers 
significantly decreases the performance of the LS adaptation 
(minimum of L2): the periodicities survive in coefficients, as 
well as the outliers. On the contrary, the LAD adaptation 
works fine: the adaptation is not affected by the outliers. 
Hence, the periodicities are mostly canceled out. 
In Figure 8 one row of the real image is shown, as well as the 
intermediate wavelet coefficients D and parameters b1

r for 
both adaptive criteria. The consequences of the outlier 
(marked by arrows) on the LS adaptation are evident. 
Computational times for described image decomposition 
methods, simulated in MATLAB using an average PC are 
presented in TABLE I.  
In this work, the adaptation algorithms were not optimized 
for efficiency, which is left for the future research. Clearly, 
the adaptation results in almost optimally sparse representa-
tion, but it is paid with significant computational burden. The 
LAD adaptation is numerically demanding, due to lack of the 
minimum L1 closed form solution. 
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Figure 7 – A magnified part of Barbara. Left: input image (x). Right: decimated one level wavelet decomposition using fixed wavelets (no 
adaptation), LS adaptive (L2) and LAD adaptive wavelets (L1). In each wavelet decomposition, upper left quarter is approximation AA; upper 
right quarter is detail AD, lower left quarter is detail DA, and lower right quarter is detail DD. Gray levels of details are rescaled for visibility. 
L2 adaptation is sensitive to outliers, L1 adaptation cancels out most of periodicities. 

 

 
Figure 8 – One row of the real image (magnified part of Barbara). 
Top to bottom: input signal x, details (L2 adapted), details (L1 
adapted), parameters (L2), parameters (L1). The LAD adaptation 
is robust to outliers (marked by arrows), which is not the case for 
the LS adaptation. 

TABLE I.  AVERAGE RUN – TIMES IN SECONDS FOR 50 DIFFERENT 
SYNTHETIC IMAGES (DIFFERENT COSINE WAVE PATCHES). TESTS ARE 

RUN ON INTEL CORE2 DUO CPU 2.67 GHZ AND 2.00 GB OF RAM. 

 DWT L2 L1  LP L1  IRWLS 
mean 0.1507 6.884 477.0 171.7 

median 0.1503 6.880 448.5 169.4 

6. CONCLUSION 

In this paper, a novel adaptive wavelet image decomposi-
tion using the least absolute deviation criterion is pre-
sented. Results on synthetic and real images show that 
proposed method outperforms fixed wavelets in the sense 
of information compaction and sparseness. The sparseness 
is very important for many applications: compression, de-
noising, compressive sensing, sparse component analysis 
and many others. We have shown the advantages of the L1 
criterion, namely robustness to outliers and shorter transi-
tions between the areas of different statistical properties. 

Good analytical properties of the proposed LAD adaptive 
scheme are paid by increased numerical complexity, which 
become less and less important along with advance of 
computers and algorithms.  
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