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ABSTRACT
In this paper we are presenting a method that provides a
dramatic reduction in memory requirement and computa-
tional complexity for an inventory-style speech enhancement
scheme with only a small impact on the perceptual quality
of the output of the system. Inventory-style or corpus-based
speech enhancement generally attempts to generate a clean
speech signal from a noisy speech signal by first estimating
the characteristics of the underlying clean signal and then
recreating it via corpus-based speech synthesis. As such,
inventory-based enhancement is very different from most tra-
ditional methods which are typically relying on adaptive fil-
tering or spectral subtraction. The advantage of inventory-
based enhancement is its (principal) ability to deliver a very
natural sounding output. A significant drawback is its large
memory requirement and its large computational complex-
ity (in comparison to traditional techniques)1. The method
proposed in this paper allows for a flexible reduction of the
memory requirement as a function of the desired perceptual
quality of the output. A data reduction by almost factor 10
is achievable with only minor losses in perceptual quality.
Furthermore, a significant reduction of computational com-
plexity is a possible choice in the implementation of the pro-
cedure.

1. INTRODUCTION

Traditional methods for speech enhancement are typically
based on adaptive filtering and/or spectral subtraction. Re-
cent examples for advanced enhancement schemes that fol-
low the traditional paradigm are the harmonic emphasis and
adaptive comb filter approach by Jin et al. [1] and the par-
ticle filter based approach by Laska et al. [2]. One of the
principle problems of filtering and spectral subtraction based
methods is that there is an inherent tradeoff between the
achievable level of noise reduction and the inevitable level
of signal distortion. Recent approaches that attempt to opti-
mally balance the two competing constraints are (among oth-
ers) the distortion minimized speech enhancement proposed
by Jo et al. [3] and the post-processing technique for the re-
generation of over-attenuated components by Ding et al. [4].

The motivation behind inventory- or corpus-based en-
hancement schemes is to devise an enhancement paradigm
that has (in principle) the ability to produce a very natural
sounding output without significant signal distortions. First

1Another significant drawback, specifically of the inventory-based en-
hancement method proposed in [5], is that it is speaker dependent with a
processing latency of around 40msec. Speaker dependency and latency,
however, are issues that are not addressed in this paper.
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Figure 1. A block diagram of the proposed speech en-
hancement system. The method employs the inventory
based scheme that was introduced by Xiao and Nickel
in [5]. The sub-blocks that are added/modified in this
paper are shaded in gray.

successful implementations of such a paradigm were (among
others) published by Xiao and Nickel [5] as well as Ming et
al. [6] in 2010. Both schemes use a corpus-based speech
resynthesis approach to generate a “clean” speech output sig-
nal. The approach by Ming et al. employs a speech unit con-
catenation scheme with a flexible unit length whereas the ap-
proach by Xiao and Nickel employs a concatenation scheme
based on a fixed unit length.

Inventory style speech enhancement systems have two
significant disadvantages: 1) they typically require a very
large amount of memory to store the inventory and 2) the
computational complexity that is required to find the inven-
tory unit that best matches an incoming noisy unit is typically
very high. In this paper we are presenting a method for a sig-
nificant reduction of the memory requirement as well as the
computational complexity of such an approach. As our ref-
erence baseline we employ the procedure proposed by Xiao
and Nickel in 2010 [5]. A block diagram of the baseline
system, including the blocks that are added/modified in this
paper, are shown in figure 1.
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It is beyond the scope of this paper to discuss the func-
tion of the entire baseline system in detail. The interested
reader may consult reference [5] for a comprehensive de-
scription. For the purpose of this work it suffices to know
that the part of the problem that causes the largest amount
of computational complexity as well as the largest amount of
required storage is a correlation procedure that attempts to
find the best matching signal segment s[n] for an incoming
noisy segment x[n] within a prescribed subset S of the inven-
tory. Which subset is chosen for the search is decided in the
baseline system by a hidden Markov model (see [5]).

2. METHODS

We assume that we have access to discrete time acoustic sig-
nals that were sampled at 16kHz with a fine quantization
granularity. We will use vectors to denote segments of these
discrete time signals. For example, the vector

x= [ x[n+1] x[n+2] . . . x[n+N] ]T (1)

denotes a segment of length N from signal x[n]. Please note
that the time alignment of the segment x at time n is, for
simplicity, not explicitly made clear in our notation. The
time alignment, however, will become clear in the context
in which vector x will be used.

Throughout our presentation we employ a normalized
correlation measure between two signal vectors x and y:

corr(x,y) =
xTy

‖x‖ · ‖y‖
. (2)

We will also employ a specific notation to access sub-
segments of signal vector x via

subv(x, p,q) = [ x[n+ p] x[n+ p+1] . . . x[n+q] ]T. (3)

Throughout our discussion of the data reduction procedure
we will refer to the speech inventory that is available to
us as s[n]. We assume that the inventory has been divided
into sub-sections si(m) of varying lengths Ni(m). All sub-
sections have been sorted according to a certain similarity
condition (see [5] for the details) into one of 50 clusters
S(m) = { s1(m), s2(m), s3(m), . . . } with

si(m) = [ s[ni(m)+1] s[ni(m)+2] . . .

. . . s[ni(m)+Ni(m)] ]T. (4)

We use index m to indicate the cluster membership and index
i to denote the segment index within cluster S(m).

The goal of the procedure that is presented in this paper
is twofold: (1) we are aiming to reduce the storage require-
ment for the inventory, i.e. for the S(m) for m = 1 . . .50, and
(2), at the same time, we are aiming to dramatically reduce
the number of operations that is required to find a suitable in-
ventory segment2 s= [ s[n∗+1] s[n∗+2] . . . s[n∗+N] ]T for
every incoming noisy segment x within a given cluster S(m).

2.1 Cluster Preprocessing
Within this section we will, for notational convenience,
omit the explicit dependency on cluster index m, i.e. S =
{ s1, s2, s3, . . . }. The goal of the cluster preprocessing is to
reorganize the unaligned, flexible length segments within a

2In our experiments from section 3 we used N = 160.

cluster into a set of time-aligned vectors of fixed length3 L.
We are considering the elements of cluster S to be elements
of a “queue”. The queue is subjected to an iterative proce-
dure during which, at each iteration k, elements are added
to the queue as well as removed from the queue. We will
use the superscript k to indicate the queue at iteration k, i.e.
Sk = { sk

1, s
k
2, s

k
3, . . . }. The queue is initialized with S0 = S

such that s0
i = si for all i.

We are furthermore initializing our collection ak of time-
aligned inventory vectors by choosing that inventory seg-
ment of S that lies symmetrically around the sample s[nmax]
with the largest absolute value in S, i.e.

a0 = [ s[nmax−Ls] . . . s[nmax] . . . s[nmax +Le] ]
T (5)

with Ls = floor(L/2) and Le = L−Ls−1. We also initialize
an “averaged” version of ak with ā0 = a0. For successive
values of k (with initial value k = 0) we run through the fol-
lowing iteration:
1. We find the time index p∗ and the queue index i∗ of the

inventory segment that best matches the current averaged
segment āk:

(i∗, p∗) = argmax
i,p

∣∣∣corr(āk,subv(sk
i , p, p+L−1))

∣∣∣ (6)

2. We extract the matching segment and chose it (equipped
with the proper sign) as our next time aligned vector:

ak+1 = subv(sk
i∗ , p∗, p∗+L−1) · . . .

sign(corr(āk,subv(sk
i∗ , p∗, p∗+L−1))) (7)

3. We update our alignment reference vector āk+1 with a
learning rate of µ = 0.2:

āk+1 = (1−µ) · āk +µ ·ak+1 (8)

The learning rate forces new ak vectors to be as similar
as possible to a collection of previous ak’s, yet allows the
possibility, as k progresses, to slowly change and adapt
to the variety of waveforms that are present in the given
cluster.

4. We update our queue with

Sk+1 = Sk−{sk
i∗}+ Ŝk+1

R + Ŝk+1
L (9)

in which (−) refers to a removal from the queue an (+)
refers to an addition to the queue. Sets Ŝk+1

L and Ŝk+1
R are

defined by

Ŝk+1
L =

{
{subv(sk

i∗ ,1, p∗+M)} if M+ p∗ >= L
{ } otherwise.

(10)

Ŝk+1
R =

{
{subv(sk

i∗ , p∗−M,Lk
i∗)} if M̂− p∗ >= L

{ } otherwise.
(11)

with Lk
i = length(sk

i ) and M̂ = Lk
i∗ +M +1 and in which

{ } denotes the empty queue.
5. We repeat the procedure until Sk+1 is empty.

As a result of this iterative procedure and a subsequent
normalization we obtain a sequence of time-aligned nor-
malized inventory vectors { ã1, ã2, ã3, . . . , ãK } in which
ãk = ak /‖ak‖.

3In our experiments from section 3 we used L = 353 so that L+N−1 is
a power of two value for faster processing.
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2.2 Generation of Sub-Clusters
We are dividing our time-aligned clusters from section 2.1
furthermore into sub-clusters. As a first step we need to cal-
culate the appropriate number of sub-clusters for each main
cluster. It would not be appropriate to pick a fixed number
of sub-clusters since the number of elements K in each clus-
ter as well as the variety of waveforms within each cluster is
significantly different. Finding the optimal number4 of sub-
clusters is, unfortunately, computationally prohibitive. We
are therefore proceeding with a heuristic approach.

A direct measure B of waveform variation within a given
main cluster is defined with

B = ∑
K
k=1 ‖ãk+1− ãk‖ . (12)

We use Bm to indicate the cluster dependency of the vari-
ation measure and, similarly, Km to denote the number of
vectors ak in cluster m. It can be observed that Bm and Km
are strongly correlated (almost proportional), yet the “pro-
portionality constant” between Bm and Km is different for
voiced and for unvoiced clusters.

We used a normalized version5 of the average pre-
emphasis energy ratio Pm that is described in [7] to measure
the “voicing level” of each cluster. If we denote the “propor-
tionality constants” of voiced and unvoiced clusters with α

and β , respectively, then we can estimate the expected varia-
tion measure B̂m for each cluster with

B̂m(α,β ) = α · (1−Pm) ·Km +β ·Pm ·Km. (13)

Vice versa, we can also use the observed variation measure
Bm to estimate values for α and β in a least squares sense:

(α∗,β ∗) = argmax
α,β

∣∣Bm− B̂m(α,β )
∣∣2 . (14)

If we assume that Vvoiced = 2L is the average number of ak’s
for voiced sub-clusters and that Vunvoiced = L is the average
number of ak’s for unvoiced sub-clusters then the resulting
number of average vectors per sub-cluster Vm for the given
main cluster m computes as

Vm =Vvoiced−
Bm−α∗ ·Km

(β ∗−α∗) ·Km
· (Vvoiced−Vunvoiced). (15)

The estimated number Qm of sub-clusters for main cluster
m becomes Qm = ceil(Km

Vm
). Furthermore, to protect against

Qm’s that are too small, we are limiting each Qm to a value
larger or equal to 5.

As a last step we can now employ a (Euclidean dis-
tance) k-means algorithm with Qm centroids on the set
{ ãm

1 , ã
m
2 , . . . , ã

m
Km
} for each cluster m = 1 . . .50. The k-

means algorithm provides a mapping k1( j), k2( j), . . . (and
so forth) that distributes the vectors ãm

k into Qm matrices Am
j

such that Am
j = [ ãm

k1( j) ã
m
k2( j) ã

m
k3( j) . . . ] for j = 1 . . .Qm.

2.3 Data Compression
The reduction of the memory requirement for the inventory
is accomplished with a singular value decomposition of each

4Optimal in the sense of a maximum average equivalent inventory recon-
struction SNR (EIR SNR) for a given compression rate, see section 2.3.

5Normalized such that max
m
{Pm}= 1. We have 0≤ Pm ≤ 1.

matrix Am
j : Um

j · Σ
m
j · (Vm

j )
T =Am

j . (16)

We assume that the singular values σ1 ≥ σ2 ≥ . . . ≥ σL are
arranged on the diagonal of matrix Σ j in descending order.
We use uk to denote the column vectors of matrix Um

j , i.e.
Um

j = [ u1 u2 . . . uL ]. Let’s assume that there exists an in-
dex ` < L to construct an appropriately compressed eigen-
vector matrix Ũm

j = [ u1 u2 . . . u` ] and the associated ex-
pansion coefficient matrix Φ̃

m
j = (Ũm

j )
T ·Am

j . A suitable ap-
proximation Ãm

j to Am
j is then given by

Ãm
j = Ũm

j · Φ̃
m
j . (17)

The quality of the resulting compressed inventory Ãm
j can be

measured with the mean-squared-error γ of the reconstruc-
tion:

γ(m, j, `) =
‖Am

j − Ãm
j ‖2

‖Am
j ‖2 =

1
c(m, j)

L

∑
k=`+1

σ
2
k , (18)

in which we use c(m, j) to denote the number of columns of
matrix Am

j . Due to the (unit energy) column normalization of
matrix Am

j we obtain the equivalent inventory reconstruction
SNR (EIR SNR) as

EIR SNR(m, j, `) =−10 · log10(γ(m, j, `)). (19)

For a given pre-defined EIR SNRdef we can select an opti-
mal `∗(m, j) for each m and j so that `∗(m, j) is the smallest
` such that EIR SNR(m, j, `) ≥ EIR SNRdef. The number of
coefficients Nc that need to be stored in memory for the re-
sulting `∗’s becomes

Nc = ∑m, j min{`∗(m, j) · (L+ c(m, j)) , L · c(m, j)}, (20)

in which we recognize that for sub-clusters for which
`∗(m, j) is too big, it is more efficient to store Am

j directly
instead of Ũm

j and Φ̃
m
j separately.

2.4 Correlation Search and Complexity Reduction
The last aspect of our modification of the approach proposed
in [5] pertains to the correlation search that needs to be per-
formed for each incoming noisy signal segment x within a
given cluster6 m. If we want to perform an optimal (i.e. full)
search within cluster m then we can find the best correla-
tion match for each incoming segment x with each column
of matrix Ãm

j for all j in a procedure similar to equations (6)
and (7). The correlation can be computed particularly fast if
L+N-1 is a power of two number (see section 3.2).

A significant reduction of the computation complexity is
possible if, instead of employing an exhaustive full search
of each cluster, we employ a suboptimal hierarchical sub-
search within each cluster. We can gage the likelihood of a
good match for a given x within sub-cluster j by performing
a correlation search across the first column of Ũm

j only (i.e.
with the dominant eigenvector). The j with the best eigen-
vector match is selected and a full search is performed across
sub-cluster j only. Note, however, that for sub-clusters for

6Again, the procedure that determines which cluster is chosen cannot be
described here due to space limitations. Please refer to [5] for the details.
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which we do not store Ũm
j and Φ̃

m
j separately, but Am

j di-
rectly, we have the additional storage requirement of u1.

Both, the data compression described in section 2.3 as
well as the complexity reduction due to the hierarchical
search have an impact on the perceptual quality. Experiments
to verify the level of this impact, as well as the amount of ob-
tainable data compression and complexity reduction are pre-
sented in the next section.

3. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed data com-
pression technique with experiments over the CMU_ARCTIC
database from the Language Technologies Institute at
Carnegie Mellon University7. The CMU_ARCTIC database
was recorded specifically to be employed in corpus based
speech synthesis. It includes datasets from two US English
male speakers with identifiers BDL and RMS, two US English
female speakers with identifiers SLT and CLB, one Cana-
dian English male speaker with identifier JMK, one Scottish
English male speaker with identifier AWB and one Indian En-
glish male speaker with identifier KSP. Each of the seven
speaker subsets contains 1132 phonetically balanced English
utterances. The utterances are roughly between one and four
seconds long.

All speaker subsets of the corpus were employed in our
study. The data was processed at a sampling rate of 16kHz.
We divided the data into two strictly disjoint sets. 1117 ut-
terances were used for the inventory design process and 15
utterances were used for the evaluation. Noise distortion was
performed by adding white Gaussian noise at a signal-to-
noise ratio (SNR) of 10dB under consideration of the active
speech level after ITU-T recommendation P.56.

3.1 Data Compression Results
Figure 2 illustrates how much data compression was
achieved with the proposed method for a given equivalent in-
ventory reconstruction SNR (EIN SNRdef after section 2.3).
Results are listed separately for each speaker. The remain-
ing data size refers to the relative storage requirement for the
matrices Ũm

j and Φ̃
m
j from equation (17) in relation to the

storage requirement for the uncompressed inventory. We al-
ready mentioned in section 2.3 that the decomposition of Am

j

into Ũm
j and Φ̃

m
j does not necessarily always result in data

compression for all sub-clusters. For those sub-clusters for
which the storage requirement for Ũm

j and Φ̃
m
j exceeded that

of Am
j we counted the storage requirement for the elements

of Am
j instead, plus the storage requirement for the dominant

eigenvector u1 (which is required for the execution of the
hierarchical search procedure after section 2.4).

A summary of average remaining data sizes over all
speakers at various equivalent inventory reconstruction SNR
levels are shown in table I. At an EIN SNR of 10dB is is
possible to reduce the inventory in average to around 12% of
its original size. Further compression is possible, however, at
the expense of a more dramatic decline of perceptual quality
of the system output (see section 3.3).

It should be emphasized that the reported compression
levels are measured by simply counting the number of scalar
values that need to be kept in memory. Significant further

7The corpus is available at <http://www.festvox.org/cmu arctic>.
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Figure 2. The remaining data sizes are shown as a per-
centage of the respective storage requirement for the
full inventory. Date sizes are listed separately for each
speaker. The average numbers across all speakers are
shown in table I.

Table I
Average Remaining Data Size as a Function of the

Equivalent Inventory Reconstruction SNR (EIR SNR).

EIR SNR Average Remaining Data Size
20dB 33.43 %
15dB 22.13 %
10dB 12.09 %
5dB 4.40 %

compression levels are very likely achievable with the intro-
duction of suitable quantization schemes [7].

3.2 Complexity Reduction
As pointed out in section 2.4 it is possible to also dramati-
cally reduce the computational complexity of the proposed
inventory based enhancement scheme with the employment
of the hierarchical search instead of the exhaustive search for
the best matching inventory unit from reference [5].

A precise evaluation of the computational complexity of
a particular processing scheme is typically tied to its exact
implementation details. Since there are many implementa-
tion schemes possible for the proposed procedure it was nec-
essary (for the sake of a representative complexity analysis)
to make the following assumption: All correlation proce-
dures are performed with 512-tap divide-and-conquer FFTs
(radix-2) [8]. For the execution of each FFT all multiplica-
tions and additions were counted, including the trivial ones.
Correlations with signal lengths in excess of 512 taps were
assumed to be processed with an overlap-and-add technique
[8]. We assumed, furthermore, that each cluster m as well as
each sub-cluster j within each cluster is equally probable to
be chosen during the enhancement process.

The results of the complexity analysis, again as a function
of the equivalent inventory reconstruction SNR, are shown
in figure 3. The remaining complexity refers to the relative
number of additions and multiplications required for the hi-
erarchical search in relation to the corresponding operations
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the respective number for the full inventory/full search
system described in [5].
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Figure 4. The performance of the proposed method
in terms of PESQ scores is shown via the respective
difference from the associated PESQ score of the full
inventory/full search performance. PESQ scores were
averaged over all testing utterances and all speakers.

required for the full search. It is clearly visible that the over-
all complexity can be reduced to about 12% (i.e. a reduc-
tion of 88% from the full search value) at an EIR SNR of
10dB and below. The EIR SNR entry FULL refers to the
case when no data compression is applied8 and therefore the
decoding of the inventory via equation (17) is not necessary.
The slight complexity increase towards an EIR SNR of 20dB
and 15dB is due to fact that at higher EIR SNR levels the ad-
ditional complexity due to the evaluation of equation (17) is
no longer negligible compared to the computation of the cor-
relation values.

3.3 Perceptual Performance
Lastly, an objective quality assessment was performed with
the Perceptual Evaluation of Speech Quality (PESQ) mea-
sure. The PESQ measure is an ITU recommendation devel-
oped by Rix et. al. [9] that is reported to correlate very well
with subjective quality of speech9. We chose the PESQ mea-
sure to be able to report results that were consistent with the
results reported in [5] for the full search approach with (al-
most) the same data set and with comparable processing con-
ditions. Figure 4 shows the change in PESQ value for vari-
ous compression and search conditions from the full inven-
tory/full search procedure after [5] (baseline PESQ of 2.3). It
is clearly visible that the proposed data compression as well
as the hierarchical search do not lead to a significant reduc-
tion in PESQ scores, but rather to a slight increase.

8i.e. when the EIR SNR is ∞dB.
9The PESQ measure was originally developed for the evaluation of

speech coding algorithms. It has, nevertheless, been used to evaluate many
speech enhancement methods as well.

This observation is also confirmed by informal listening
tests with a few expert listeners who reported that the data
compression between 20dB EIR SNR and 10dB EIR SNR
led to a positive reduction in some of the high pitched musi-
cal noise that is present in the output of the full inventory/full
search procedure. The reduction in musical noise is partially
due a suppression of the spectral fine structure (especially at
higher frequencies) of the re-synthesized speech. While this
reduction in spectral fine structure was still rated as accept-
able at an EIR SNR of 10dB it was no longer rated acceptable
at an EIR SNR of 5dB.

4. CONCLUSIONS

We presented a method for a dramatic reduction in mem-
ory requirement and computational complexity for the in-
ventory style speech enhancement scheme that was proposed
by Xiao and Nickel in [5]. Experiments show that with an
acceptable loss of spectral fine structure, yet an appreciable
improvement in musical noise reduction, both the computa-
tional complexity as well as the memory requirements can be
reduced to around 12% of the corresponding requirements
for the reference method [5]. Sound examples will be pre-
sented at the conference.
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